
Czech Technical University in Prague

Faculty of Electrical Engineering

Department of Computer Science and Engineering

Master's Thesis

Client-server Communication Protocol for CellStore
Database Engine

Klient-server komunika£ní protokol pro databázový stroj
CellStore

Bc. Martin Plicka

Supervisor: Ing. Jan Vraný

Study Programme: Electrical Engineering and Information Technology

Field of Study: Computer Science and Engineering

May 18, 2009

iv

v

Acknowledgements

I would like to thank Ing. Jan Vraný for his conscientious supervision of my work and
valuable advice. Also, I really appreciate the great work atmosphere present CellStore
team has created. Last but not least, I would like to thank my family and friends for
neverending support during my studies.

vi

vii

Declaration

I hereby declare that I have completed this thesis independently and that I have listed
all the literature and publications used.
I have no objection to usage of this work in compliance with the act �60 Zákon £. 121/2000Sb.
(copyright law), and with the rights connected with the copyright act including the
changes in the act.

Prague, May 18, 2009 .

viii

Abstract

The aim of this work is to describe whole process leading to design and implementa-
tion of client-server protocol for CellStore database engine. It contains discussion about
selection of communication mechanism and data representation. Is also describes fea-
tures and common guidelines of API which was being created. All source code of both
client and server part, including API documentation, are appended on CD. In appendix,
there are also exhausting instructions for running CellStore database with remote access
service and for compiling of client library and client programs.

Abstrakt

Cílem této práce je popsat celý proces návrhu a implementace klient-server protokolu
pro databázový stroj CellStore. Obsahuje diskusi výb¥ru komunika£ního mechanismu
a reprezentace dat. Dále uvádí a popisuje vlastnosti a spole£ná pravidla vytvá°eného
API celé klientské knihovny. Na p°iloºeném CD jsou mimo jiné umíst¥ny ve²keré zdro-
jové kódy jak klientské tak serverové strany v£etn¥ dokumentace API. V p°íloze jsou
také uvedeny informace pro zprovozn¥ní databáze CellStore, v£etn¥ sluºby pro vzdálený
p°ístup, a informace pro kompilaci klientské knihovny a na ní zaloºených program·.

ix

x

Contents

1 Introduction 1

2 Analysis 3
2.1 Interfaces of Existing Object & XML Database Engines 3

2.1.1 eXist . 3
2.1.2 Sedna . 5
2.1.3 NeoDatis ODB . 6
2.1.4 GemStone/S . 6
2.1.5 Oracle XML DB . 7

2.2 CellStore Database Engine . 8
2.2.1 XML:DB Interface . 8
2.2.2 SELF Model Interface . 11

2.3 Client-server Protocol for CellStore . 12
2.3.1 Protocol Requirements . 12
2.3.2 Implementation Approaches . 12

3 RPC Programming in C and Smalltalk/X 15
3.1 XDR Description . 15
3.2 RPC Programming in C . 16

3.2.1 Server . 17
3.2.2 Client . 17
3.2.3 Building and Running . 17

3.3 RPC Programming in Smalltalk/X . 19
3.3.1 Server . 20
3.3.2 Client . 21
3.3.3 Various Smalltalk/X RPC Enhancements 22

3.4 RPC in Other Programming Languages 23

4 Protocol 25
4.1 Mapping Object World to ONC RPC . 25

4.1.1 Handling the Objects Remotely 26
4.1.2 Exceptions . 26

4.2 Message & Control Flow . 26
4.2.1 Single-Call Operations . 27
4.2.2 Multi-Call Operations . 27

4.3 Large File Transfer . 28
4.3.1 Data Transfer . 29

4.4 Naming Conventions and Organization 31

xi

xii CONTENTS

4.5 Implemented Functionality . 32
4.5.1 XML:DB . 33
4.5.2 DOM . 33
4.5.3 OODB . 33

5 Realization 35
5.1 Server Side - Smalltalk/X . 35

5.1.1 Multi-threaded RPC Server - RPCMTServer Class 35
5.1.2 Server Core - RemoteServer Class 36
5.1.3 Session Object Holder - SessionStorage Class 38
5.1.4 Large Files Transfer - SocketJob Class 39
5.1.5 Special Read Stream - NetReadStream Class 42
5.1.6 CellStore Service - RPCService Class 43
5.1.7 Remote Server Launcher - RemoteServerWizard Class 43
5.1.8 Example - XML Import . 44

5.2 Client Side - C Library . 44
5.2.1 API Guidelines . 44
5.2.2 Library Structure . 45

5.3 Smalltalk/X Client example - RemoteClient Class 46

6 Testing 49
6.1 Unit Testing Tools Used . 49

6.1.1 Smalltalk/X - SUnit . 49
6.1.2 C Language - Check Library . 49

6.2 Test Coverage . 50
6.2.1 Server Side - Smalltalk . 50
6.2.2 Client Side - C . 51

6.3 Performance Measurements . 52

7 Conclusion and Future Work 55

Bibliography 57

A List of Used Abbreviations 59

B Installation Instructions 61
B.1 CellStore Installing . 61
B.2 Client Library Compiling . 62
B.3 Demo Applications . 63

C Programming with the Client Library 65

D CD Content 69

List of Figures

2.1 CellStore architecture [1] . 9
2.2 XML database hierarchy in CellStore database console 10

3.1 Sample C server procedure . 18
3.2 Sample C client code . 18

4.1 Sample reply de�nition . 27
4.2 Client-server protocol, capitalized labels represent RPC messages 28
4.3 File upload protocol from client side . 31

5.1 Brief capture of client-server implementation architecture 36
5.2 Server - basic structure . 37
5.3 Code of RPC operation with standard reply behavior 38
5.4 Code of RPC operation after enhancement 38
5.5 SocketJob hierarchy . 40
5.6 Structure of the sample Smalltalk/X client 47

6.1 New TestRunner for Smalltalk/X SUnit tool 50

B.1 Demo applications: sample output . 64

C.1 Whole tutorial source code without comments 68

xiii

xiv LIST OF FIGURES

List of Tables

6.1 Performance measurements - running times 53
6.2 Performance measurements - client-server protocol overhead 53

xv

xvi LIST OF TABLES

Chapter 1

Introduction

CellStore [1] is a native XML database engine which was born at Department of Com-
puter Science & Engineering at Czech Technical University in Prague, Faculty of Elec-
trical Engineering. It's being developed both for educational and research purposes. It's
entirely written in Smalltalk on Smalltalk/X platform running either on Windows or
Linux systems.

Currently, it works as an embedded database so it can be run as local library only.
But this is not enough for real application development and deployment. For these
purposes we want to develop client-server based protocol to enable remote access to
various CellStore database interfaces.

CellStore is formerly XML database but since new object interface was developed,
database can handle any object data. Protocol should re�ect that and should be able,
beyond the former XML database access, to work with any arbitrary objects.

This thesis describes the protocol design and implementation of both client and
server components. Client part has to be implemented as a dynamic library written
in C language. As a consequence, it can be also linked to any programming language
that supports C calls to external libraries. Server side will be implemented as a module
(service) of CellStore database engine in Smalltalk language.

Second chapter of this thesis gives a brief information about existing object or XML
database engines and their client-server protocols. Then, it describes CellStore features
and discusses its protocol requirements. Third chapter brings introduction to RPC pro-
gramming on both platforms being used. Fourth chapter, Protocol, describes all aspects
of protocol design, including guidelines for its extension. In �fth chapter, Realization,
there are discussed main issues that had to be solved during the implementation of both
client library and server module. In Testing chapter, test coverage of both components
is described and a simple performance measurement is presented. Last chapter brings
conclusion and aspects of future work and protocol expansion. In appendix, among
others, there are installation instructions for both server part and client library, and the
developer's guide for client applications.

1

2 CHAPTER 1. INTRODUCTION

Chapter 2

Analysis

At �rst, this chapter provides information about existing XML and object-oriented
databases and focuses on their remote access possibilities. This information will be used
for discussion about features we want the CellStore client-server protocol should sup-
port. Also this can bring us the inspiration how to design whole protocol and client API.
Next section summarizes CellStore database engine capabilities and interfaces which can
be used and which should be accessed remotely. In the last section, there are several
variants for data encoding confronted with protocol requirements.

2.1 Interfaces of Existing Object & XML Database Engines

2.1.1 eXist

The project called eXist [2] was started by Wolfgang Meier in 2000. It's written in Java.
It supports XQuery 1.0 and XPath 2.0. According to [2], there are three ways how to
run the database engine.

• In a Servlet Context. The database is deployed as part of a web application in
servlet. It's the default setting.

• Embedded in an Application. In embedded mode, the database is basically used
as a Java library, controlled by the client application. It runs in the same Java
virtual machine as the client, thus no network connection is needed and the client
has full access to the database.

• Stand-alone Server Process. eXist runs in its own Java virtual machine. It provides
either XML-RPC, WebDAV or REST-style HTTP API or remote access. It use
Jetty as a web server providing those interfaces.

When running as a servlet within the web application, XQuery can be used for
generating web output by similar way as JSP or PHP do. In this case, all HTTP
requests to with URI leading to a *.xql �le are caught and processed by XQuery using
HTTP extensions, producing (X)HTML output. This way, simple web applications can
be written.

The latter case is the most important for us as a comparison for this thesis. All three
approaches will be discussed more in detail in following text.

3

4 CHAPTER 2. ANALYSIS

2.1.1.1 REST API

REST is a term for common principles which de�ne resource addressing and usage via
HTTP protocol without using additional messaging layer [3]. Interfaces de�ned this way
are also called "RESTful". In case of eXist and many other similar systems, REST API
maps the URI in HTTP request to the resource provided by the XML database. It uses
four HTTP methods for manipulating the data.

1. GET.
Get method retrieves data from database. Request URI is mapped to the XML
database structure and appropriate output is returned. If URI resolves to a XML
resource, this will be returned. In case of collection, a list of child collections and
resources (in XML format) is returned. XQuery or XSL transformation can be
also applied. There request must be encoded to the URL together with the URI
of the resource they have to be applied to. Also, it's possible to execute stored
XQuery by sending request to resource with *.xql su�x. In this case, XQuery is
interpreted in the same way as in Servlet deploying case.

2. PUT.
Put request stores or updates given resource. Data is encoded in request.

3. DELETE.
Delete simply erases collection or resource from database.

4. POST.
Post method is used to upload XML fragments to server, such as XUpdate queries
or large XQuery scripts which cannot be encoded to Get method.

2.1.1.2 WebDAV

WebDAV part of client-server protocol map each collection to directory path. Using
that, user is able to upload, delete, view and edit resources as if they were �les. There
are many clients supporting WebDAV for all mainstream operating systems.

2.1.1.3 XML-RPC API

XML-RPC is the most important API for us since it can bring us an inspiration for
designing our own protocol. eXist provides driver for Java XML:DB API introduced
on [4]. It add some more functionality as User management and multiple database
instances.

XML-RPC API provides all these features to programmers of client applications.
But it doesn't map the RPC calls 1:1 to the XML:DB API. Many functions were made
simpler to save network bandwidth.

The most signi�cant change is in collections and resources addressing. These are
not referenced by name and their parent node but using full path URL instead. All
operations which a�ect some resource or collection (creating, moving, deleting) use full
path as an identi�er. For example getDocument() method takes full path including
parent collections to return resource content. This approach minimizes amount of service

2.1. INTERFACES OF EXISTING OBJECT & XML DATABASE ENGINES 5

data transfered (XML-RPC is quite bandwidth ine�ective since it sends all messages
encoded in XML-like message).

Executing of queries is available via executeQuery() method. Executing previously
stored query is possible as well. Results can be accessed selectively, by using retrieve()
method. Using query() both previously noted operations are merged into one call.

To handle large data, eXist introduces some improvements to save server memory.
Documents (resources) can be retrieved by chunks using getDocumentData() initial
method and getNextChunk() for other parts, respectively. Importing can be done di-
rectly by calling parse() method or via temporary uploaded �le using upload() and
parseLocal() methods.

Rest of features such as XUpdate queries and user management are beyond the
XML:DB speci�cation.

2.1.1.4 SOAP

Nowadays, Simple Object Access Protocol (SOAP) [5] is more common than XML-RPC
[6]. It supports Web Services Description Language (WSDL [7]) based code generation.
eXist API provides two SOAP services, Query and Admin. The former one allows read-
only access and querying while the latter one provide all available operations. The API
is nearly identical to its XML-RPC counterpart.

2.1.2 Sedna

Sedna [8] is a free native XML database which provides a variety of database services
- ACID transactions, security, indices, hot backup. XML processing facilities include
W3C XQuery implementation, integration of XQuery with full-text search facilities and
a node-level update language.

Sedna provides client-server protocol which is well documented and already imple-
mented for various programming platforms. It's based on message sending.

Protocol support transactions, query executions and result retrieving. It resolves
only three data formates: integer (4 bytes in network order), byte and string. Each
message is formatted in following manner:

• The �rst four-bytes integer is an instruction code.

• The next four-bytes integer is length of the following body in bytes.

• The rest of message contains the message speci�c data of length speci�ed by the
previous �eld.

For large data handling, auxiliary messages are present. After se_Execute message
is sent, the query is performed and the se_QuerySucceeded is sent back. After that, �rst
item of result is passed from server using several se_ItemPartmessages with data chunks
and se_ItemEnd signaling no data in current item is available. If client wants another
result item, it sends se_GetNextItem message and the retrieving process is repeated.

6 CHAPTER 2. ANALYSIS

2.1.3 NeoDatis ODB

Neodatis [9] is a simple representative of object oriented databases. It currently runs
on the Java, .Net, Google Android, Groovy and Scala. It support object storing and
fetching. Queries can be done using Native queries (it's a query implemented in client's
native language), Criteria query (hierarchy of boolean expressions and other predicates)
and by OID (object ID). It supports limited range of native data types.

It can be run either as embedded database or via client-server protocol. The client-
server protocol is quite simple. It consist of set of messages and replies to them. All
messages are de�ned as classes, for example, message invoking storing of an object
is described in StoreMessage and the appropriate reply in StoreMessageReply class,
respectively. Messages contain at least command code, an integer constant value de�ned
in Command class. Messages are sent via standard TCP socket in serialized format since
they implement Serializable interface.

Objects to be stored are sent in message body. NeoDatis database use three layers
of data representation: client language native, meta representation and physical storage
representation. Objects are transmitted in form of meta representation data which also
implements Serializable interface to make the stream encoding possible. Errors can be
present in reply message and they are represented as strings.

2.1.4 GemStone/S

Gemstone Smalltalk Object Server (GemStone/S) [10] is an object application server
using Smalltalk as application language and providing physical storage for object-based
application data. Server part consist of two kinds of nodes which can be distributed in
network, Gem, the application server itself, and Stone object repository manager.

Gemstone has several client-server interfaces.

• GemBuilder for Smalltalk. It provides interface to access to the Gemstone
from Smalltalk client applications

• GemBuilder for C. It allows connecting the C application with Gemstone server.

• Topaz, scriptable command line interface to Gemstone/S.

• UserActions. They are similar to Smalltalk primitives. They can be written
using Gembuilder for C.

Unfortunately, the client-server protocol is not public, thus it's not described here.
We will focus on GemBuilder for C in following section.

2.1.4.1 GemBuilder for C

GemBuilder for C is a library providing access to the GemStone application and the
repository. It can be run either as linked code or via RPC connection.

It supports two ways of usage:

2.1. INTERFACES OF EXISTING OBJECT & XML DATABASE ENGINES 7

• Downloading objects from repository, using so called structural access, and per-
forming actions with their data on client side.

• Sending messages to objects on GemStone/S server. This option is described in
following text.

GemBuilder use unique 32-bit object-oriented pointer (OOP) to identify remote ob-
jects. In C program, it's represented by variable of OopType type. Also, identi�ers of
all GemStone/S kernel classes and special objects such as nil, true, false and errors
are de�ned.

Some of GemStone objects are stored as immediate values within the OOPs so Gem-
Builder have macros to retype their appropriate representations in C. To send mes-
sage to an object, GciPerform procedure is used. It takes three arguments: receiver
OOP, array with arguments and its length. By calling the GciNewSymbol function,
a symbol (which can represent, for example, a message name or dictionary key) is
created. GemBuilder also provides several functions for complex Smalltalk code exe-
cuting. GciExecuteStr takes C string with Smalltalk code and executes it on server.
GciExecuteStrFromContext treats the string as the message send to some object.

2.1.5 Oracle XML DB

Oracle database is not a typical member of XML database group since its XML DB
works as an extension of object-relational database system [11]. It brings new object
type, XMLType, which represents XML structured data.

In Oracle XML:DB extension is implemented via PL/SQL packages. PL/SQL pack-
age DBMS_XDB is an API for managing resources and security through access con-
trol lists (ACLs). It also provides a basic XML DB con�guration. Two new views
were introduced to obtain information about stored XML resources. These are RE-
SOURCE_VIEW and PATH_VIEW. Note that this API is not compatible with the
one speci�ed by XML:DB Initiative [4] and it sometimes speci�es new terms (folders
instead of collections and so on).

Oracle XML DB also provides an interface to manipulate data stored in XML re-
sources in several ways. Its PL/SQL packages, JAVA or C APIs contain functions for
manipulating XML data using DOM approach, calling XML parser, or produce output
using XSL transformation. All DOM APIs are compliant with the W3C DOM Level 1.0
and Level 2.0 Core Recommendation.

All these features can be used by standard client protocols provided by Oracle.
This includes various clients and interfaces such as Java Database Connectivity (JDBC)
driver.

To make the access to the XML documents as easy as possible, Oracle supports sev-
eral standard internet protocols. Documents hierarchy is mapped to directory structure
and XML data can be uploaded or downloaded as �les. Network protocols, such as
HTTP(S) and WebDAV, or FTP are used for data transfer.

8 CHAPTER 2. ANALYSIS

2.2 CellStore Database Engine

CellStore database provides wide range of interfaces � from low level ones to high level
ones such as SELF model interface or XML:DB interface. Figure 2.1 shows architecture
of CellStore as well as its interfaces.

One of the most important layers is so called SELF engine. One of important layers
is, in the middle, a new SELF engine. This layer allows to store any data structured to
objects provides generic and easy to use interface for higher-level interfaces to CellStore
database.

On the top of SELF layer, there are several interfaces which provide various access
methods, including XML:DB API [4] and OODB (object-oriented database) API. All
important interfaces which will be provided by our new protocol are described later in
this section.

At �rst, we will describe CellStore XML:DB interface which is the most important
for us. In latter sections, some other interfaces, including SELF, are mentioned.

2.2.1 XML:DB Interface

XML:DB interface was developed to �t needs for accessing XML-based data in database
engines. It was designed by XML:DB Initiative [4]. Last changes in API are dated to
year 2001.

XML databases come with XML documents as a basic structure for storing data (it's
often called as document-centric approach). These documents are stored in resources.
XML resources can be accessed atomically by DOM1 or SAX2 interfaces. Both of them
allow to inspect every element of XML document separately. Using SAX interface (de-
�nes set of events used by XML parsers), it's possible export the XML resource as set of
SAX (parser) events for further processing in another tool. Some databases also allow
to store binary resources containing arbitrary data.

Resources are organized hierarchically in the database. The nodes in the tree struc-
ture are called collections. XML database contains root collection by default. Sample
structure is shown on CellStore database console on �gure 2.2.

XML:DB API allows common operations with collections and resources like child
nodes listing, adding, removing and information obtaining. Also, it provides few services
to extend its functionality (transaction service, XPath service etc.). The speci�cation
can be found in JavaDoc on [4].

CellStore XML:DB API classes are located in XMLDB namespace and they re�ect
the XML:DB speci�cation as much as possible. CellStore implementation adds several
functionalities. XPath service was replaced by XQuery service which is not present
in former XML:DB speci�cation. XQuery [12] is a complex query language used with
XML-based data. XPath is a subset of XQuery providing document elements identifying
so there is no missing functionality.

Because CellStore is written in Smalltalk, XML:DB API lacks some features which
are speci�c for other programming languages. For example, iterators are often used in
C++ or Java code. But in Smalltalk, there is not usual to use iterators. Using of #do:
method is a common habit. The most important XML:DB API classes include:

1Document Object Model
2Simple API for XML

2.2. CELLSTORE DATABASE ENGINE 9

Text Space Cell Space

Highlevel Cache Manager

Storage Manager

Transaction Manager

ACL Manager

Database
Instance

Data Accessor

Object Memory

Object Memory Backend
Common Object Model (Perseus)

XQuery

XML:DB API

OODBClient
Server

OPS
Index

XPath Data
Accessor

Cell Model

Cell Model

Self Model

Lo
w

 L
ev

el
 S

to
ra

ge
F

ro
nt

 E
nd

 A
P

Is
A

pp
lic

at
io

ns

DB Console

Figure 2.1: CellStore architecture [1]

10 CHAPTER 2. ANALYSIS

Figure 2.2: XML database hierarchy in CellStore database console

• XMLDB::XMLDBDatabase

Main object representing the database instance on XML:DB level. It can be ob-
tained using #getXMLDBDatabase method of DatabaseInstance object3.

• XMLDB::Collection

This class represents XML:DB collection and provides operation with it and its
child collections and resources.

• XMLDB::Resource

This is a superclass for all types of resources which can be stored in CellStore
database. Currently, only XMLResource and XQueryResource are supported and
working. They represent XML document and stored XQuery query, respectively.
Both these resources can be exported using DOM or SAX interface. XQuery
resource also have to be evaluated before it is exported. XML resource can be
imported either from DOM or XML �le. This �le can be streamed so no additional
memory is used.

• XMLDB::XQueryService

This service provides XQuery interpreter which evaluates query on given collection.
It can be obtained by sending #getXQueryService message to XMLDB::Collection

object. XQuery is evaluated by passing query: message to the service. It returns
XQueryResult object which is, in fact, a collection of XQueryResultItem objects.
These items represent each part of XQuery result. Result of execution can be
converted to DOM or exported as XML document using SAX interface and XML
writer.

3This object represents whole CellStore database instance.

2.2. CELLSTORE DATABASE ENGINE 11

2.2.1.1 DOM API

The Document Object Model[13] is an interface which allows reading and modifying of
various structured documents content, especially XML documents. Document model
has hierarchical structure. Each node can have one of several types (element, attribute,
etc.) and particular number of child nodes, according to its type. Document structure
can be changed and stored back into database.

Huge disadvantage is fact that when using DOM interface with CellStore, all data
are copied out from database to server memory. For example, #getContentAsDOM of
XMLDB::XMLResource will copy whole structure from database to hierarchy of DOM
nodes. These nodes can be modi�ed, removed, or fresh nodes can be added to existing
structure. Then, whole DOM hierarchy can be imported back to the database using
setContentAsDOM: method. Large XML document generates huge DOM structure so
the size is limited by available physical memory. Mapping the DOM interface directly
to CellStore SELF data could be better solution since no additional memory in virtual
machine would be necessary.

2.2.2 SELF Model Interface

Recent versions of CellStore database model all data structures in the database as a
SELF-like objects. SELF [14] is a prototype-based object-oriented language which is
even simpler than Smalltalk. In a reduced form, it serves as a universal data access
provider for upper CellStore layers. SELF data model allows to store any data structured
to objects without concerning about low level representation. The only operation in
SELF is a message send.

Compared with Smalltalk, it doesn't di�erentiate between instance variables and
methods. SELF has slots instead. The only way how to access a slot content is via
message send. When a message is sent to an object, appropriate action depends on
content of the slot. If the slot contains an object reference (this slot is called data

slot in SELF language), this will be returned without further processing. If the slot
contains method, its code will be executed and result value is returned. Every data-slot
has implicit getter and setter. In CellStore, concrete SELF objects are represented by
cell-pointers, pointers to CellStore physical storage.

There are several ways how to execute a SELF code:

• A message is sent to SELF object represented by cell pointer together with its
arguments. These arguments must be another SELF objects.

• SELF code is executed in context of implicit receiver (SELF object). If no implicit
receiver is speci�ed, object called lobby is used4. This options allow performing
message cascade. For example, evaluating of "xmldb root" with implicit receiver
causes sending xmldb message to lobby and root to the result of previous call. As
a result object representing XML:DB root collection is returned.

4Implicit receiver is a term of SELF language. It's called "implicit" even if it is speci�ed explicitly.

12 CHAPTER 2. ANALYSIS

For both ways of usage, SELF interpreter is required. It can be obtained by send-
ing the #newInterpreter message to ObjectMemory object which represents the SELF
memory space.

Objects of higher layer interfaces such as XML:DB (see �gure 2.1) are mostly realized
as object proxies. Object proxy allows to work with SELF object as if it was Smalltalk
object. It contains cell-pointer to the SELF object it is associated with. Almost every
of its methods consist of message sends to associated SELF object.

2.3 Client-server Protocol for CellStore

2.3.1 Protocol Requirements

Our protocol must respect few requirements:

1. Bandwidth e�ciency. Work with SELF API consists of many simple operations
calls. Our protocol should be bandwidth e�ective then.

2. Extensibility. CellStore is still in development phase and most likely the pro-
tocol or the API will change in near future. Therefore, protocol should be easily
extensible by means of programmer's e�ort required to implement such changes.

3. Portability. If some additional toolkit is used, native implementation in other
programming languages should be available to make the protocol implementing
possible. Furthermore, our protocol implementation will be in form of C library.
That makes it linkable to various programming languages which support C callouts.

4. Various data transfer. The protocol must be able to transfer any kind of data,
including large binary objects.

2.3.2 Implementation Approaches

There were several possibilities of data representation to consider. Every of them is
facing the requirements its own way.

2.3.2.1 Text-based Protocol and Data Representation

Text-based representation is used in various widely spread network protocols, including
FTP, SMTP of HTTP. It can be debugged easily because it's human readable. It's
extensible as far as extensible protocol parser is used. Problems come with binary
data transfer. To keep data represented by readable characters, various coding methods
are used. For example, MIME [15] format together with encoding techniques such as
quoted-printable or base64 is used for sending of binary data or non-ASCII characters
using SMTP protocol (SMTP was designed for 7 bit ASCII). This brings some data
overhead. Although CellStore does not support binary resources at present, protocol
should be designed with respect to this option.

2.3. CLIENT-SERVER PROTOCOL FOR CELLSTORE 13

2.3.2.2 Binary Protocol

Designing our own binary protocol would probably bring us the most bandwidth-e�ective
result. All message codes, operation statuses and other control values would have their
byte length as low as possible. But on the other hand, bad design can make further
protocol extension costly. For example, coding operation number into one byte would
become a problem in future because it would limit the number of di�erent operations
available (which is 256 in case of 1 byte used).

2.3.2.3 Remote Procedure Call

Remote Procedure Call (RPC) is a common term for communication mechanisms allow-
ing programmers to call program code remotely from another machine the same way as
local functions. Several implementations were developed such as Open Network Com-
puting Remote Procedure Call (ONC RPC, [16]), XML-RPC [6] and Corba [17]. Their
common property is data representation in platform independent format. This format
can be either binary or text-based (mostly XML-like text). XML format brings visible
overhead, thus it's not bandwidth-e�ective for sending of many short messages. Binary
representation usually gives us better results by means of bandwidth-e�ectiveness.

2.3.2.4 Conclusion

First two options discussed above have signi�cant disadvantages. Text-based protocol
misses e�ciency because of the binary data coding. Furthermore, if XML formatting
was used, e�ciency in case of many short calls would fall down.

The main disadvantage of binary protocol is it's extensibility. CellStore is still in
development phase and nobody knows what features will appear in future. Our protocol
must be versatile in this point of view so custom binary protocol is not a good idea -
simply because it's very costly to extend.

We chose RPC solution because it is versatile and allows easy protocol extension
in case of further changes and new features addition. From various kinds of RPC im-
plementations we �nally chose ONC RPC [16] (also known as SunRPC). It uses binary
data representation (will be described later) so it seems to be bandwidth e�ective. More-
over, both SunRPC client and server are already implemented in Smalltalk/X and ONC
RPC client libraries are available for all commonly used operating systems. Chapter 3
describes RPC programming in both C and Smalltalk/X.

14 CHAPTER 2. ANALYSIS

Chapter 3

RPC Programming in C and
Smalltalk/X

From options discussed in previous chapter, we �nally chose ONC RPC [16] (also called
SunRPC). ONC RPC is a protocol formerly developed by Sun Microsystems [18] for their
NFS protocol and other network services. It uses XDR [19] as an interface and data
de�nition language. It identi�es application by integer number which must by unique
on server system. Remote procedures are identi�ed by procedure number and program
version number. Various transfer protocols, including TCP and UDP, can be used for
connection. Remote port number of service can be obtained via portmap service (which,
in fact, is also RPC application) or input directly during connection initialization.

3.1 XDR Description

XDR [19] means for eXternal Data Representation, OSI presentation layer implemen-
tation, used with ONC RPC [16]. Using XDR, it's possible to transfer various data
information between two interconnected systems running on di�erent platforms.

XDR description uses own syntax similar to C language. It contains signatures of
all procedures which can be run remotely, followed with protocol version and program
number. Program number is used to identify the network application on portmapper.
Program number space is partially regulated by IANA. See [16] for more information.

Following example is taken from [20]. I had to make some changes because Smalltalk
implementation of XDR parser lacks some syntax elements.

/* msg.x: Remote msg printing protocol */

typedef string stringArg<>;

program MESSAGEPROG {

version PRINTMESSAGEVERS {

void null(void) = 0;

int PRINTMESSAGE(stringArg message) = 1;

} = 1;

} = 200001;

15

16 CHAPTER 3. RPC PROGRAMMING IN C AND SMALLTALK/X

In this example, program MESSAGEPROG with number 200001 and version 1 is de-
scribed. It has two procedures. The �rst one, null, numbered with 0, is intended for
connection testing purposes and should be present. The second, PRINTMESSAGE takes
exactly one argument - a string - and returns integer value.

Among the basic types, XDR supports complex types like structures, unions, arrays
and strings (both variable and �xed size). See [19] for more information.

3.2 RPC Programming in C

For C language, there is a powerful tool called rpcgen that reads out the XDR de�ni-
tion mentioned above and generates both client and server stubs, conversion routines
and application templates. Following text expects usage of rpcgen version available in
GNU/Linux distributions1.

Useful commands are:

#generate XDR routines and common headers

rpcgen msg.x -N

#generate sample client code, redirect it to file

rpcgen msg.x -Sc -N > msg_client.c

#generate sample server code

rpcgen msg.x -Ss -N > msg_server.c

#generate makefile template

#(it must be edited - must contain list of files to be compiled)

rpcgen msg.x -Sm -N > Makefile

These commands are recommended to run in given order since Make�le generation
automatically adds common headers and XDR routines.

The most important switches of rpcgen command are listed bellow.

• -Sc switch forces rpcgen to generate sample client code to standard output

• -Ss generates sample server code.

• -Sm generates versatile Make�le.

• -N option allows "new" style of programming. It means multiple arguments and
easier RPC routines call so arguments are not needed to be passed as structures
anymore. Default mode (without -N option) is for backward compatibility.

• -M generates multi-thread safe code. It's not used in this project yet.

1Unfortunately, several implementations of rpcgen are available for various platforms. Sometimes,
they di�er in their API or behavior and set of features than can be used within XDR de�nition.

3.2. RPC PROGRAMMING IN C 17

3.2.1 Server

Sample server code in msg_server.c �le contains code stubs for each procedure (and
version) declared in XDR de�nition. These procedures will be executed when particu-
lar RPC call is received. In our example we can simply implement the procedure for
PRINTMESSAGE call as shown on �gure 3.2.1. You can see that the procedure name is
assembled from RCP procedure name and program version number. This code will print
the received message to standard output. Integer value of 1 will be returned back to
client.

Similar to this, we need to implement all exported procedures in all versions declared
in XDR de�nition. Note that we do not have to add no code to null procedure stub
since it really does nothing. It's aimed for connectivity tests and thus it should be
declared in every RPC-based protocol and server should respond to it.

3.2.2 Client

Generated sample client code in msg_client.c �le shows the way of calling the remote
procedures. I modi�ed it a bit to make it simpler and the result is shown on �gure 3.2.2

As you can see, rpcgen generates functions to all exported RPC procedures. We can
start using them right after connecting. clnt_create() provides the simplest way to
create connection handler.

3.2.3 Building and Running

rpcgen tool can generate nice Make�le using the arguments discussed at the beginning
of this section. The only thing we have to do is to add all source �le names to the
variable de�nitions at the beginning of the Make�le. For our example, it should be like
following:

CLIENT = msg_client

SERVER = msg_server

SOURCES_CLNT.c = msg_client.c

SOURCES_CLNT.h =

SOURCES_SVC.c = msg_server.c

SOURCES_SVC.h =

SOURCES.x = msg.x

TARGETS_SVC.c = msg_svc.c msg_xdr.c

TARGETS_CLNT.c = msg_clnt.c msg_xdr.c

TARGETS = msg.h msg_xdr.c msg_clnt.c msg_svc.c

These variables are used for determining all build targets and dependencies. Also we
must modify the RPCGENFLAGS variable to make rpcgen using new style of coding every
time it is called.

RPCGENFLAGS = -N

18 CHAPTER 3. RPC PROGRAMMING IN C AND SMALLTALK/X

int * printmessage_1_svc(stringArg message, struct svc_req *rqstp) {

static int result;

printf("Message: %s\n", message);

result = 1;

return &result;

}

Figure 3.1: Sample C server procedure

#include "msg.h"

int main (int argc, char *argv[]) {

if (argc < 3) {

printf ("usage: %s server_host message\n", argv[0]);

exit (1);

}

CLIENT *clnt;

int *result;

//creating connection handler, TCP transport is selected

//MESSAGEPROG and PRINTMESSAGEVERS are defined in msg.h file

clnt = clnt_create (argv[1], MESSAGEPROG, PRINTMESSAGEVERS, "tcp");

if (clnt == NULL) {

clnt_pcreateerror (argv[1]);

exit (1);

}

//calling the procedure, name also contains program version

result = printmessage_1(argv[2], clnt);

if (result == (int *) NULL) {

clnt_perror (clnt, "call failed");

}

else printf("Reply: %d\n", *result);

clnt_destroy (clnt);

}

Figure 3.2: Sample C client code

3.3. RPC PROGRAMMING IN SMALLTALK/X 19

To compile both client and server, use make command. To get client only, run
make msg_client or make msg_server for server, respectively.

Running the server is easy. Just type

./msg_server

Server will serve any RPC request and can be terminated by keyboard interrupt (e.g.
Ctrl+C). Client has two command line arguments, as seen in example code. Run

./msg_client localhost "Your message"

Message is printed on server side and integer of value 1 is returned and printed by
client.

We can also test connectivity using the rpcinfo tool:

#call procedure 0 in program with number 200001, version 1, using TCP

rpcinfo -t localhost 200001 1

#call procedure 0 in program with number 200001, version 1, using UDP

rpcinfo -u localhost 200001 1

3.3 RPC Programming in Smalltalk/X

Smalltalk/X provides several classes for SunRPC located in Net-Communication-RPC

category. They include RPC server and client, XDR parser and decoder/encoder, to-
gether with several implemented RPC applications, such as NFS server and Portmap
server. Following introduction is inspired by the tutorial on eXept site [21]. It's adapted
to the sample in section 3.2.

Smalltalk/X's RPC implementation is very simple to use. All things that are needed
to do is:

1. Subclass both SunRPC::RPCClient and SunRPC::RPCServer classes.

2. Write XDR description. Assign as a return value of #xdr class method for both
server and client class.

3. Assign TCP/UDP ports to be used on server side. Implement instance method
portNumbers that returns a collection containing all port that can be used.

4. Implement instance methods according to XDR de�nition on server side.

5. Implement instance methods for our own client API, using calls to procedures
de�ned by XDR. This is optional since we can call remote procedures using default
#operation:arguments: method (see sample provided later).

20 CHAPTER 3. RPC PROGRAMMING IN C AND SMALLTALK/X

3.3.1 Server

3.3.1.1 XDR Description

SunRPC::XDRParser omits some syntax features from C rpcgen so XDR �le from [20]
had to be modi�ed slightly. Smalltalk/X XDR parser implementation is unable to parse
the de�nition with identi�ers of procedure arguments. I made improvement to allow
them. See section 3.3.3 for details.

XDR is assigned as a class method to server (and also to client) class. During the
server initialization, XDR is parsed and particular information is stored to Definitions
class variable.

xdr

^'

/* msg.x: Remote msg printing protocol */

typedef string stringArg<>;

program MESSAGEPROG {

version PRINTMESSAGEVERS {

void null(void) = 0;

int PRINTMESSAGE(stringArg message) = 1;

} = 1;

} = 200001;

'

3.3.1.2 Assigning Ports

Next step is to implement instance method portNumbers returning collection containing
all ports that can be used. These ports are tried one by one. When socket is success-
fully opened, current port is registered to Portmapper. Smalltalk/X also has its own
Portmapper implementation which can be run automatically so it is not needed to have
system Portmapper installed. But in this case, Smalltalk/X virtual machine must have
administrator privileges to open port 111 on Unix/Linux systems.

Simplest way of de�ning the ports:

portNumbers

^ (11000 to: 11100)

3.3.1.3 Implementing methods

We need to implement every method described in XDR �le (as instance methods). Meth-
ods have one argument - collection of all RPC procedure parameters, as they are de-
scribed in XDR de�nition. These methods are automatically called when the remote
call is received. Sample follows.

PRINTMESSAGE:args

Transcript showCR: (args at:1).

^ 1.

The null procedure is already implemented in superclass.

3.3. RPC PROGRAMMING IN SMALLTALK/X 21

3.3.1.4 Controlling the Server

Following code shows the way how to control our new server (expecting our server class
is named EchoServer).

|server|

"start using TCP (default)"

server := EchoServer start

"or start using UDP"

server := EchoServer startUDP

"stop the server"

server release

"program definition is stored in class object"

"after altering xdr method we need to force parsing it again"

EchoServer initDefinitions

EchoClient initDefinitions

Startup will fail when the program number is already registered in portmapper.
To remove previous registration, use following command (as root) which will remove
registration for program with number 200001 and version 1.

rpcinfo -d 200001 1

After successful server startup it's possible to use client from C section. Note that we
used TCP protocol for our C client so server has to be initialized using TCP. Smalltalk
implementation does not run using both UDP a TCP at the same time.

Our implementation of client-server protocol uses new SunRPC::RPCMTServer which
is able to process more connections at once using separate Smalltalk processes. It is very
simple enhancement of standard RPCServer class and also has the same API. It's dis-
cussed in detail in section 5.1.1.

3.3.2 Client

Client is also very easy to implement. XDR assignment is done the same way as in
case of server. To avoid actualization problems, client should take XDR de�nition from
server.

xdr

^ EchoServer xdr.

Default client has universal methods to invoke remote procedures but in general, it's
better to implement our own API. Following method calls the PRINTMESSAGE procedure:

printMessage: string

"prints message on remote screen"

^ self operation: #PRINTMESSAGE arguments: (Array with: string).

22 CHAPTER 3. RPC PROGRAMMING IN C AND SMALLTALK/X

3.3.2.1 Controlling the Client

There exist several ways how to connect. RPCClient provides methods to connect
without asking the portmap service. Following code will connect using portmapper
query and will call PRINTMESSAGE procedure which will print given message on screen
(in case of C server) or Transcript (in case of Smalltalk/X server). Afterwards, the
return value is printed by client.

| client reply |

client := EchoClient toHost: 'localhost'

reply := client printMessage: 'hello world'

client close.

Transcript showCR: reply.

3.3.3 Various Smalltalk/X RPC Enhancements

During the development process, I found that Smalltalk/X RPC implementation lacks
some important features which are used in our protocol implementation.

• XDR parser is not compatible with rpcgen. It does not allow names of argu-
ments in procedure de�nitions. But rpcgen requires them to generate C code
successfully. It's annoying to convert the XDR de�nition �le to Smalltalk RPC
compatible form each time it is modi�ed. Due to this, I modi�ed the XDR parser
in SunRPC::XDRParser class. The #procedureDef method represents procedure
de�nition token in recursive descent implementation of top-down parsing model.
I modi�ed this method to make argument names optional (identi�er token is read
when found). Now parser can read unmodi�ed content of service_rpc.x �le.

• XDR coder in SunRPC::XDRCoder class had not have array encoding and decod-
ing implemented. Several RPC procedures in our protocol use arrays as a return
values. XDR parser in Smalltalk/X recognizes array de�nitions but XDR coder
had not been able to use it. Array binary representation is described in RFC 4506
[19]. Encoding and decoding are performed in #encodeArray:type:with: and
#decodeArrayWithType: method, respectively. Coder now supports both variable
and �xed length array.

� For �xed size arrays, always the same number of values are expected on
stream.

� In case of variable size, the array is prepended by 4 byte value containing the
number of values in oncoming array.

• Smalltalk/X SunRPC implementation is able to process at most one TCP con-
nection or UDP datagram at once. Since we want to use TCP connection to be
active all the time client is operating, our server has to be able to process more
than one connection at once. This issue has been solved by former SunRPC server
modi�cation which brings multi-threaded processing. It's described in detail in
chapter 5.1.1.

3.4. RPC IN OTHER PROGRAMMING LANGUAGES 23

3.4 RPC in Other Programming Languages

ONC RPC is wide spread standard so several RPC implementations can be found.
In consequence, our new protocol can be implemented on di�erent platforms. Several
implementations of ONC RPC exist for various languages. During a short search, I
found following:

• Remote Tea, pure Java implementation of ONC RPC.
http://remotetea.sourceforge.net/.

• rpcc - Python ONC RPC Compiler, together with demo RPC implementation
seems usable.
http://www.cs.umd.edu/~gaburici/rpc/ and
http://svn.python.org/view/python/trunk/Demo/rpc/

• ONC/RPC for Windows, free implementation.
http://oncrpc-windows.sourceforge.net/

http://remotetea.sourceforge.net/
http://www.cs.umd.edu/~gaburici/rpc/
http://svn.python.org/view/python/trunk/Demo/rpc/
http://oncrpc-windows.sourceforge.net/

24 CHAPTER 3. RPC PROGRAMMING IN C AND SMALLTALK/X

Chapter 4

Protocol

The aim of this chapter is to describe problems with client-server protocol speci�cation.
First section comes with discussion about problems with mapping of object-oriented
world to non-object environments, including the XDR interface. Next sections bring
information about protocol message and control �ow, including special behavior during
large binary objects transfer.

Complete XDR speci�cation of CellStore protocol can be found in service_rpc.x

�le in client library sources or in #defaultXdr method de�nition in RemoteServer class
in server part.

4.1 Mapping Object World to ONC RPC

Object oriented languages has several features which cannot be handled by ONC RPC
directly. This section describes these features and their mapping to ONC RPC.

In Smalltalk, every operation is a message send to some object. Even '1 + 2'

expression represents message send. "1" is an object (SmallInteger class) which receives
message #+ with one argument, another integer with value "2". The former object (with
value "1") is called receiver.

This can be easily emulated by regular ONC RPC procedure calls. Message will be
represented by a standard function and reference to the receiver will be passed as its
�rst argument followed by message arguments. By this way, we can solve the problem in
our protocol since we are able to send and receive references to server objects we work
with. Except of this easy issue, there are two other problems which are more di�cult to
solve:

• Object references. Remote handling must protect objects from deletion caused
by garbage collector on server side.

• Exceptions. These cannot be simply raised over network connection since ONC
RPC wasn't designed to handle exceptions.

25

26 CHAPTER 4. PROTOCOL

4.1.1 Handling the Objects Remotely

All database operations are done on server side so we need a mechanism for referencing
the objects we process. I used unique unsigned 4 byte integer values as object identi�ers.
These are transferred in RPC calls or replies, respectively.

There is no type control in protocol. All object references have the same type. The
reason is simple. Target platform (e.g. C language) might not know inheritance and
categorizing might be not �exible since remote operations can return reference to various
objects (Smalltalk itself is not type language). Basic type control is performed on server
side on demand. Server operations can check the referenced object type where needed.
This can prevent from unexpected errors caused by object mismatch. More information
about server-side type control can be found in section 5.1.3.

Alternatively, user can ask for object class name, but this operation returns string.
Class types cannot be identi�ed by enumerated value because it's di�cult to determine
all used classes. Object class name should be used for debugging purposes only.

Due to the garbage collector in Smalltalk/X, these references cannot be simply equal
to object memory addresses (actually, it's not easy to get the memory address of an
object in Smalltalk). When garbage collecting process is run, objects addresses will
probably change every time, but our references, stored on client, won't.

Also, we need to protect the objects from erasing. References from client don't
a�ect garbage collecting process so these objects will be deleted if there is no other
reference (and there aren't for almost all objects). Both these problems are solved using
SessionStorage class. It is described in chapter 5.1.3.

4.1.2 Exceptions

In object-oriented languages, errors are represented by exceptions, tiny objects which
hold information about error that has occurred. In our protocol, we need to transfer
the information they are holding towards the client side. For this purpose, exceptions
are represented by enumerated values. Every exception raised on server is caught and
converted to its proper code number. These codes are speci�ed in cs_status enumer-
ated value in service_rpc.x �le. Finally, this code, together with the error message
contained in exception, is packed into the reply and sent to client.

To acquire this way of error handling, every RPC procedure reply (except of null
procedure) is a union value. First item, status contains error code or CS_STATUS_OK

value (equal to 0) signaling no error. If operation �nishes properly (status is equal to
0), next item, value is present and contains operation result. In case of failure, string
item named description contains error message. Sample reply de�nition is shown on
�gure 4.1. Note that items in switch cannot have the same identi�cator because rpcgen
tool generates code which cannot be compiled then.

4.2 Message & Control Flow

Whole protocol is quite simple and straightforward. It can be described in following
sequence (also, see �gure 4.2).

4.2. MESSAGE & CONTROL FLOW 27

union cs_reply_int switch (cs_status status) {

case CS_STATUS_OK:

unsigned int value;

default:

cs_arg_string description;

};

Figure 4.1: Sample reply de�nition

1. Ask Portmapper for application port. This option is recommended since server
may use di�erent port every time it is run. Application is identi�ed by program
number.

2. Connect. Client have to open new TCP connection to port retrieved from portmap
service.

3. Send HELLO request. This is not mandatory, but recommended. When maximum
connection is reached, server responds with CS_ERROR_TOO_MANY_CONNECTIONS er-
ror code to the �rst procedure being called. For this reason, it's recommended for
client libraries to use this �rst call to get informed and disconnect before any oper-
ation attempt is done. In future, HELLO procedure may serve for more purposes.

4. Call operations as they are requested.

5. Disconnect.

As seen on �gure 4.2, there are two possibilities how to perform an operation in
connected state:

• singe-call operations,

• multi-call operations.

4.2.1 Single-Call Operations

Almost all operations related to current CellStore features are single-call. They're per-
formed as the RPC request is delivered and decoded. In �nal API implementation, these
operations are mapped 1:1 to the protocol de�nition and they're atomic.

4.2.2 Multi-Call Operations

Multi-call operations consist of more than one messages and other actions. To reach
operation �nal state successfully, client has to perform several operations in given order.

At present, the only multi-call operations are large �les import and export actions.
They're called "Socket jobs" since they use another connection (represented by network
socket). To achieve proper behavior, several auxiliary operations are needed. Large �le
transfer is described in detail in chapter 4.3, concrete implementation is explained in
chapter 5.1.4.

28 CHAPTER 4. PROTOCOL

HELLO

Another RPC
request

Import/Export request

Data transfer

SOCKET_JOB_STATUS

SOCKET_JOB_ABORT

Disconnect

Disconnected

getPort request

Connect

Disconnected

[OK]

[Next request]

[Import/Export request]

[Continue]

[Abort]

[Everything done]

[Maximum connections exceeded]

Figure 4.2: Client-server protocol, capitalized labels represent RPC messages

4.3 Large File Transfer

When not mentioned, all issues in this section will be explained on case of �le imports.
Download operations can be thought similarly.

Transfer of large �les can be problem for RPC based protocol. It's neither possible
nor acceptable to store whole �le in a memory to encode it into XDR stream and receive
it at the opposite side. Even if we divide the �le into chunks and send them separately
in many RPC requests, some temporary memory (RAM or hard drive) is needed to store
these chunks together before processing.

Since XML readers or writers work on streams, it's memory e�cient to parse the
�le or generate output, respectively, directly on the network stream without storing
to memory or temporary �le. Both XML reader or writer is invoked by calling the
only method having a stream as an argument. As a consequence, the whole processing
operation is atomic. During the RPC call, client is in blocking state and waits for reply
so he is unable to send or receive data. As a result, import and export operations cannot
be implemented in one RPC call.

As explained above, data transfer cannot be atomic from the protocol point of view.
As seen on �gure 4.2, multi-call operation have 3 phases:

4.3. LARGE FILE TRANSFER 29

1. initialization,

2. data transfer and processing,

3. checking status.

First and last phase are implemented as RPC calls. Initialization does all required
actions to prepare server side for data transfer. For example, XMLDB_UPLOAD_RESOURCE
procedure call announces XML database resource upload. Checking status is done with
SOCKET_JOB_STATUS message.

Note that only one Socket job is allowed at the same time. Once new initiation
procedure is called, previous job is aborted.

The middle action (data transfer) has several possibilities how to solve it:

• Receive whole data in small chunks via RPC calls and save it to the temporary
�le or memory, then process it on server side. Memory is not good solution since
the �le may be large and virtual machine has limited memory. File seems as a
suitable emergency option but better solutions follow.

• Receive data in small chunks via RPC requests and push them into server-local
pipe which is directed to the parser running in another process. This require
additional data processing at server side.

• Use RPC connection stream to serve data to the importer. This solution can be
di�cult to implement because all possible error states have to be under considera-
tion to ensure that RPC connection won't be broken during the unexpected error.
Also, it must be save to return the stream to the RPC processing mode (to receive
another request). This option may be unacceptable on some platforms and client
implementations since we need to get the RPC connection socket descriptor.

• Use separate TCP stream to serve data. This option is better in relation to RPC
server and error handling is easier.

The last option was selected because it's easy to implement on both client and server
side. It's versatile enough to provide platform for various features which can be imple-
mented in future. Auxiliary connection should be initiated from client to pass possible
�rewall on client side. To allow process to be aborted in any time by another RPC call
easily, importer should run in separate process. See realization notes in chapter 5.1.4 for
details.

4.3.1 Data Transfer

Protocol of data transfer depends on the direction of the transfer. Download jobs are
simpler so they will be described at �rst.

30 CHAPTER 4. PROTOCOL

4.3.1.1 Data Download

When download job is initiated (for example, by calling XMLDB_DOWNLOAD_RESOURCE

RPC procedure), all the client has to do is:

1. Connect to server address and given port. Port number is returned in a reply of
the initiation procedure call.

2. Read out all data until the EoF1 �ag is detected (remote side closes the connection).
Using C sockets, EoF is detected when blocking read returns no data. If export
operation fails on server, remote connection is closed immediately.

3. Close the opened socket.

After data transfer is �nished, client must ask server for operation status. This is
done with SOCKET_JOB_STATUS call. Procedure will contain CS_STATUS_OK status value
if everything is done. Otherwise, code value representing exception which caused the
error is returned. Also, reply contains message extracted from the exception.

4.3.1.2 Data Upload

For uploading data from client to server, several modi�cations has to be applied. It is
expected that XML parser reads data until the end of �le (or stream, respectively) is
reached. If Socket is used, the connection has to be closed to indicate end of �le.

But connection closing is not acceptable since client needs to wait for ACK2 message.
It's important for client to ensure that import is �nished before upload job status is
checked to avoid non-consistent states. The best way to make client waiting is to use
blocking read operation. So connection can be closed just after ACK message is received.

To achieve requested behavior, we must emulate EoF signaling other way. Data being
sent to server are divided into blocks. Before every block is written to socket, client has
to send header �rst. This header is 4 Byte integer value in network format announcing
the length of the oncoming block. Header with zero value indicates reaching the end of
input �le.

Block size can vary during the transfer, server is able to process blocks of di�erent
length. Too short blocks are not recommended. If operations want to read long data,
server must merge the data from more blocks divided with headers. This brings small
performance drop. Also, if short blocks are used, the bandwidth e�ciency will decrease
because more headers have to be sent. Practically, blocks of sizes in order of kilobytes
are long enough.

After sending the zero header, client waits for ACK message, 4 byte integer, which
has currently value of 7777 (this is not important since client does not perform any value
check). After receiving, the connection is closed. Then, client calls SOCKET_JOB_STATUS
procedure to check the upload status.

Structure of data communication is shown on �gure 4.3.

1End of File
2Acknowledgment

4.4. NAMING CONVENTIONS AND ORGANIZATION 31

Upload confirmed

Disconnected

Connect

Done?

Send header = 0

Send header = N

Send N bytes of data

Receive ACK

Disconnect

[All data sent]

[Some data left]

Figure 4.3: File upload protocol from client side

4.4 Naming Conventions and Organization

To keep the protocol messages organized, some system is brought to the remote proce-
dures naming. Procedure names contain pre�xes which map them to the hierarchy of
packages and objects.

Some core and auxiliary procedures are left without pre�xes but almost all are named
in following manner. The leftmost pre�x assigns the messages to the package. These
pre�xes are listed below. Operation code (procedure number) patterns for each category
are placed in parentheses.

• (no pre�x) - various auxiliary procedure calls (0000xx).

• SOCKET_JOB_ - common functions for controlling socket jobs - large �le transfers
(0001xx).

• OBJECT_ - functions for remote objects handling (2000xx).

• XMLDB_ - XML:DB API functions (3xxxxx).

• DOM_ - DOM API methods (4xxxxx).

• OODB_ - SELF oriented operations (5xxxxx).

32 CHAPTER 4. PROTOCOL

Some packages also have separation on next level. The most signi�cant example
is XML:DB API. It is di�erentiated by next pre�x, according to the class which the
procedures are mapped on.

• XMLDB_ (no further pre�x) - XMLDB::XMLDBDatabase functions (3000xx).

• XMLDB_COLLECTION_ - XMLDB::Collection (3001xx).

• XMLDB_COLLECTION_TRANSACTION_ - Transaction control on collections (30015x).

• XMLDB_RESOURCE_ - XMLDB::Resource and subclasses (3002xx).

• XMLDB_RESULT_ and XMLDB_RESULTSET_ - operations with XQuery result (3003xx).

• XMLDB_UPLOAD_ and XMLDB_DOWNLOAD_ - large �les transfer initiation (301xxx).

Error codes are assigned in the same manner using similar pre�xes. For example
XML:DB API error codes de�ned in cs_status enumeration have their names pre�xed
with CS_ERROR_XMLDB_ and values in form of 3xxxxx.

Custom arguments have their names pre�xed with cs_arg_ and return value types
with cs_reply_. As explained before, every reply value type has to be a union. It is
switched by status value (CS_STATUS_OK or appropriate error code) and contains return
value itself or error message string. See code in �gure 4.1 for example. The name of
the new return value type is derived from the inner value type. For example if we
want to return integer value (int type), the appropriate union type will be named as
cs_reply_int.

4.5 Implemented Functionality

Following section aims to describe functionalities implemented in current version of
protocol. It only de�nes the range of operations provided and adds info about some
special calls. Formal description of all available operations together with comments are
speci�ed in service_rpc.x �le.

Operation categories are mentioned in previous section. Expect of those described
in their own subsections, there are some groups left.

• Auxiliary session procedures. This include HELLO message described before and
IDENT which return some info about server.

• Socket job control messages. SOCKET_JOB_STATUS returns current job status or
error if occurred. Using SOCKET_JOB_ABORT can abort that job. See chapter 4.3
for more information.

• Remote object handling procedures. The most important is OBJECT_DROP. This
allow to drop any remote object when it's not needed by the client anymore. Pro-
grammers have to release unused objects to avoid wasting the memory during the
session. Also, OBJECT_IDENTICAL and OBJECT_EQUAL are available for comparing
two object by identity or content, respectively.

4.5. IMPLEMENTED FUNCTIONALITY 33

4.5.1 XML:DB

XML:DB API was implemented completely as it's available in CellStore. Every method
is mapped to RPC procedure using naming conventions described in previous sec-
tion. Operations which are available via XML:DB services (like transaction or XQuery
services) are mapped directly so no previous service obtaining (using operations like
#getService:version:) is necessary.

Among these operations, there are two special procedure calls which are not mapped
to concrete API method. They prepare the large �les import / export using auxiliary
socket. These procedures are XMLDB_UPLOAD_RESOURCE and XMLDB_DOWNLOAD_RESOURCE.
See chapter 4.3 for large �les protocol speci�cation and section 5.1.4 for server imple-
mentation.

4.5.2 DOM

As noted before, DOM interface has one serious disadvantage. Before any operation can
be done, whole structure must be copied to new structure in memory. We expect DOM
interface outage as soon as direct node access to XML resources and XQuery result will
be available. Due to this, DOM operations provided by our protocol are not complete
and probably it won't be extended at all. Only node-related procedure calls has been
de�ned and employed, allowing read-only access to object model nodes, their child nodes,
values and attributes. Also, its possible to export the object tree represented by its root
node to the XML string.

It possible to check the node type by calling the DOM_GET_TYPE procedure. It returns
value de�ned in cs_reply_dom_type enumeration type in XDR description.

4.5.3 OODB

OODB package provides methods for remote work within SELF layer of CellStore
database. This API is similar to one provided by GemBuilder for C described in section
2.1.4. Available messages can be divided into several groups:

• Obtaining the object pointer. OODB_GET_OOP retrieves SELF memory pointer
from known upper layer objects like XMLDB collection or resource.

• Simple object creating and fetching. Only strings and integers are available.
For example, OODB_CREATE_STRING will create a string in server object memory.
Backwards, using the OODB_FETCH_STRING procedure, string is read from object
memory and sent back to client.

• Code executing. OODB_EVALUATE and OODB_EVALUATE_WITH_IMPLICIT_RECEIVER
will execute given code in context of default (lobby) or explicitly given receiver.
Alternatively, OODB_SEND_MESSAGE or OODB_SEND_STORED_MESSAGE will send given
message to given receiver with arguments passed. Later option refers to message
selector stored as interned string on server.

34 CHAPTER 4. PROTOCOL

Chapter 5

Realization

This chapter describes the most important issues which had to be solved during the
implementation of both server component and client library.

Figure 5.1 provides brief look at whole architecture of client-server protocol. Server
side is represented by Smalltalk code. Client side is primarily done in C language, as
explained in previous chapters.

5.1 Server Side - Smalltalk/X

As seen on architecture �gure 5.1, RPC based protocol depends (not ultimately) on
portmap service which registers running service and provides information about port
the service is running on. Portmapper daemon often runs on Unix systems or can be
installed. Also, Smalltalk/X installation contains its own portmapper so it's used when
the system one is not found.

Whole server layout is described on �gure 5.2. Server consist of many important
components represented by concrete classes. Most of them are described in this section.

5.1.1 Multi-threaded RPC Server - RPCMTServer Class

Smalltalk/X comes with SunRPC server implementation which is able to process at most
one TCP connection at once (or sequential UDP requests). For our purpose, where long
term connections from clients are expected, we need to handle more connections simul-
taneously. On that account, I enhanced the basic SunRPC::RPCServer with features
described below.

I created SunRPC::RPCMTServer as a subclass of RPCServer class. It inherits most
of its functionality and adds ability to process more connections at once. Note that this
feature, by principle, works with TCP connection only.

Once connection is accepted by main server process1, the new process is created and
the whole connection is handled in this new process. During the fork, also new server

1Note that term "process" stands for Smalltalk/X process and means something di�erent than Unix
process. Smalltalk virtual machines have their own scheduler and memory management. Smalltalk
processes are rather similar to threads because they have access to whole virtual machine memory (as
opposite to Unix processes which have their own virtual memory space)

35

36 CHAPTER 5. REALIZATION

Client Server

Portmapper

RemoteServer

Session
storage

ONC RPC standard functions

CellStore engine

libcellstore

cellstore.c

cellstore_xmldb*.c cellstore_oodb.c

cellstore_tools.c

Client program

XML:DB API

SELF model layer

TCP/26666

Register

getPort
UDP/111

Figure 5.1: Brief capture of client-server implementation architecture

object is created and assigned to current connection. Child server objects are connected
with their parent via instance variable. This link is used to share some resources, e.g.
reference to CellStore database instance.

Once forked, new process continues executing as if the server was single-threaded.
To make basic protection against overloading, number of simultaneous connections is
limited. When maximum amount of child processes is reached, all new connections will
be closed by the main server process immediately.

Few further changes have been made in concrete implementation of server component
which is discussed in section 5.1.2. These changes are speci�c for current client-server
protocol and aren't related to general multi-threaded modi�cation.

5.1.2 Server Core - RemoteServer Class

This object represents the RPC server for CellStore client-server protocol, listening on a
TCP port. Also, another instance is created for each incoming connection to store session
speci�c information like connection socket or session object storage (session storage will
be explained in chapter 5.1.3). In fact, it inherits SunRPC::RPCMTServer class and
implements all exported operations.

Main object purposes are:

• De�ne XDR description of protocol. #xdr method was improved to load current
XDR de�nition from local �le. This feature is used during development and allows
to share the same protocol speci�cation with client library.

• Implement all exported RPC operations.

5.1. SERVER SIDE - SMALLTALK/X 37

SunRPC::RPCServer

- defini tions
- port
- protocol

+ xdr()
+ loop()
+ handleCl ient:(aSocket)
+ start()

SunRPC::RPCMTServer

+ handleCl ient:(aSocket)
+ handleCl ientHelper:(aSocket)

RemoteServer

+ defaul tXdr()
+ xdr()
+ handleCl ient:(aSocket)
+ handleStream Client:(aSocket)
+ fi ina l ize()
+ perform Operation:withArgum ents:(opNam e, argVector)
+ ...RPC operations ...()

DatabaseInstance

XMLDB::
XMLDBDatabase

SessionStorage

- storage

+ store:(anObject)
+ get:(aKey)
+ get:type:(aKey, aClass)
+ get:types:(aKey, Array)

AbstractService

+ registerT o:(databaseInstance)
+ unregisterFrom :(databaseInstance)
+ start()
+ shutdown()

RPCService

+ start()
+ shutdown()

SocketJob Described on
SocketJob class
d iagram

Both classes are
im plem ented in
ce l lstore:core package

0..1

socketJob

server

registeredServices

1

sessionStorage

xm lDatabase

databaseInstance

0..1

parent

0..*

Figure 5.2: Server - basic structure

5.1.2.1 Operations

As shown in RPC introduction chapter, all RPC calls are simply mapped to the methods
with the name equal to procedure name de�ned in XDR de�nition �le. As noted in
chapter 4, all result values of RPC calls consist of at least two items. The �rst one
is always the status code. The second one depends on status. When operation end
properly, it contains reply value.

In Smalltalk/X implementation of RPC, struct-like (struct, union) reply values are
expressed as dictionaries. For example, reply to DOM_LIST_COUNT procedure call might
look like code on �gure 5.3.

But this example only shows solution in case that operation �nished correctly. If
operation raises an exception, this will not be caught and not stored into the reply. In
addition, server process will be aborted due to the exception. So every exception must
be caught and the reply value must be modi�ed according to protocol speci�cation.

This is done in overridden #performOperation:withArguments: method. To dis-
tinct exception type from others, every exception class has #cellstoreIdentifymethod
de�ned. This method returns unique status code. These codes correspond with de�ni-
tion of cs_status enumerated value in XDR de�nition. Once caught, the identi�cation

38 CHAPTER 5. REALIZATION

DOM_LIST_COUNT: args

|reply|

reply := (self sessionStorage getNodeList:(args at:1)) length.

^ Dictionary new

at: 'status' put: #CS_STATUS_OK;

at: 'value' put: reply.

Figure 5.3: Code of RPC operation with standard reply behavior

DOM_LIST_COUNT: args

|reply|

reply := (self sessionStorage getNodeList:(args at:1)) length.

^ reply.

Figure 5.4: Code of RPC operation after enhancement

method is called and the return value is set as a operation status. Default value, returned
by base Object class, is CS_ERROR_OTHER.

This enhancement also allows programmers to return operation value only. The
whole reply value is packed into the reply in #performOperation:withArguments: so
the resulting code of each operation may look simpler as shown on �gure 5.4.

Sometimes it's necessary to construct whole reply in method which implements the
operation. For this purpose, reply value packing mechanism was modi�ed to detect
whether whole reply is received from concrete operation method already. To distinguish
this situation, operation must return reply as ReplyDictionary object. This class is
private in RemoteServer. If return value with this class identity is detected, the reply is
passed unchanged.

To identify errors generated by various classes of server component, RemoteServer
also contains another private class, CustomError. This is an exception class providing
several status codes to identify various custom errors.

The server core also contains some modi�cations for testing and debugging purposes.
These modi�cations are discussed in chapter 6.2.1.

5.1.3 Session Object Holder - SessionStorage Class

To handle garbage collector issues mentioned in chapter 4.1.1, I created a structure which
stores references to objects being used during the session and assigns them unique refer-
ence numbers. This structure is implemented in SessionStorage class and its enhanced
version (discussed later) in EnhancedSessionStorage.

Basic method #store: adds given object to storage and returns unique reference.
To get the referenced object back, #get: method is used. If the reference is not valid,
an exception is thrown.

Storage can also provide basic type control. Using the #get:type: or #get:types:
method, server-side operations can check that they're obtaining object with proper class

5.1. SERVER SIDE - SMALLTALK/X 39

or subclass. Note that this is the only way how to ensure that proper object is processed
since client side has no type control. Checking for type protects client application pro-
grammers from "method not understand" errors caused by passing reference to wrong
object. For example, when XMLDB_DOWNLOAD_XML routine is called, it ensures that the
object given is either XML-like resource or XQuery result. Many methods for concrete
cases were created as wrappers for universal methods mentioned above. For instance,
#getResource: calls

self get: aKey type: XMLDB::Resource

If aKey variable does not contain reference to object of XMLDB::Resource class or
its subclass, an exception with CS_ERROR_OBJECT_TYPE_MISMATCH code is raised.

5.1.3.1 EnhancedSessionStorage Class

SessionStorage assigns new reference value every time the #store: method is called
even if the objects are identical. This forbids identity comparing based on reference
value equality. During the object storing, it seems useful to �nd out whether the object
is present already and return its reference. But CellStore interface methods return fresh
objects every time they are called so identity check won't help.

Almost all objects handled by session storage are either object proxies or cell-pointers
themselves. Although object proxies representing the same object are not identical, they
can be compared by their content (using #= message) because they have identical content
- cell pointer.

EnhancedSessionStorage uses cross-directed dictionary having objects as keys and
their remote references as values. This dictionary can be used to quickly search for
already stored object. When detected, old reference value is returned. In this case,
client is able doing quick identity compare based on reference value.

Unfortunately, this feature cannot be used in current remote server con�guration.
Not all objects handled by remote server are object proxies. For example, DOM objects
are stored outside SELF memory and their content does not say anything about their
identity. For example, two elements with the same name and same attributes are not
identical. If we treat them as identical, we won't can change content of only one of them.
Also DOM object cloning won't work.

For this reason, EnhancedSessionStorage is not used until DOM operations are re-
implemented to direct access operations on SELF storage. At this time, this seems as
the only precondition for allowing enhanced storage usage.

5.1.4 Large Files Transfer - SocketJob Class

Protocol for large �les transfer is described in section 4.3. Implementation on server side
can vary independently on protocol speci�cation.

Running import or export operations in client handling process is dangerous since
when launched, importer cannot be stopped any other way than closing the connection.
But we cannot guarantee that all importers or exporters will react to this behavior

40 CHAPTER 5. REALIZATION

SocketJob

- error
- process
- rem oteSocket
- runn ing

+ abort()
+ closeStream ()
+ errorM essage()
- fo rk:nam e:(aB lock, nam e)
+ ki l lProcess()
+ port()
+ portNum bers()
+ prepare()
+ sta tus()

UploadJob

- basicImportTo :(resource)
+ closeStream ()
+ errorT estingM ode()
+ forkAndIm portT o :(resource)
- im portT o :(resource)
+ prepare()

DownloadJob

- rem oteConnection

- basicExportFrom:(resource)
+ closeStream ()
- exportFrom :(resource)
+ fo rkAndExportFrom :(resource)
+ port()
+ p repare()

XMLDownloadJob

- basicExportFrom :(resource)

XMLUploadJob

- basicIm portT o :(resource)
+ canUploadResourceT ype()

Genera l ized class fo r
resource download ingGenera l ized fo r resource

upload ing

Com m on in terface to
hand le socket jobs

Figure 5.5: SocketJob hierarchy

properly. When separate process is used, whole job can be simply cancelled by killing
this particular process from another RPC call.

SocketJob class is a root of a hierarchy responsible for large object transfer. Whole
hierarchy is illustrated on �gure 5.5. SocketJob implements methods common to both
directions of data transfer. The most important are:

• #portNumbers (class)
Speci�es the range of available ports that can be used for incoming connection.

• #fork:name:

Runs given block in a new process. Kills previously initialized process if there is
any.

• #abort

Aborts already running job.

• #status

Retrieves error code if some exception has occurred or CS_SOCKET_JOB_WORKING if
process is running yet. Otherwise, it returns CS_STATUS_OK.

On next level of hierarchy, there are generic classes for uploading and downloading,
UploadJob and DownloadJob, respectively. They implement whole code common for

5.1. SERVER SIDE - SMALLTALK/X 41

particular type of socket jobs and de�ne interface for concrete upload or download jobs.
Important methods on this level are (explained on UploadJob class, DownloadJob has
similar behavior).

• #prepare

Creates new socket and makes it waiting for incoming connection. It returns a
port number of the listening socket. This method is called during the �le transfer
initialization RPC call (e.g. XMDLB_UPLOAD_RESOURCE).

• #forkAndImportTo:

Creates new process and runs #importTo: in it.

• #importTo:

Waits for incoming connection and runs importing process in #basicImportTo:

method which has to be implemented in every particular class and does operations
speci�c for concrete resource being uploaded. I note that these method shouldn't
be called directly from main process.

When implementing new upload job (upload of new type of resource), all programmer
has to do is to inherit subclass from UploadJob class and implement #basicImportTo:
method which imports data from object local stream (or socket) to resource gives as
an argument. Similarly, to create new download job, inheriting from DownloadJob and
implementing of #basicExportFrom: method are required only.

In following sections, details about data transfer are discussed.

5.1.4.1 Downloads

Download process can be realized very easily. In Smalltalk/X, network socket (realized
in Socket class) behaves like any other stream. So it can be passed to XML parser or
writer, respectively, instead of the �le stream or any other stream. In case of upload,
situation is slightly di�erent and it's described later.

In this case, new socket which is used for data transport has always to be initialized.
So at �rst, request message (e.g. XMLDB_DOWNLOAD_RESOURCE) is sent. This operation
prepares new socket. Then it replies with port number the socket is listening on. After
that, client can connect to remote server address and given port and send or receive
data.

When data is transfered or connection is closed unexpectedly, client sends
SOCKET_JOB_STATUS message to check previous operation status. In case of failure of
any kind at server side, reply will contain proper exception code and error message.

5.1.4.2 Uploads

Upload processes should use NetReadStream class instead of standard Socket to allow
client wait until all server operations are �nished. This prevent client from asking for
operation status before it is �nished.

42 CHAPTER 5. REALIZATION

5.1.5 Special Read Stream - NetReadStream Class

XML parsers read data from streams. Socket is also kind of stream. But due to reasons
discussed in section 4.3, the data �ow of import stream is di�erent than in case of
export. NetReadStream was created as a replacement of standard Socket having the
same interface as generic ReadStream. It solves upload protocol issues mentioned in
section 4.3. It can be passed to parser as if it was ordinary stream such as FileStream.
In fact, it contains listening TCP socket receiving remote connections for data transfer.

The most important methods are:

• #initSocket

Creates listening socket where connection from client will be expected. Returns
port number.

• #accept

Waits for incoming connection.

• #readBlockHeader

Reads out the header (4 Byte integer in network format). If zero header is received,
it will set EoF �ag.

• #ensureHeaderRead

If no more bytes in current block left, reads next header. Otherwise, does nothing.

• #ack

Sends ACK message to client and closes connection.

• #close

This method does nothing. Parsers can close stream as they reach the end of �le.
But we do not want them to do this.

• Methods from ReadStream interface. They are modi�ed to ensure that they can
read from stream by calling the #ensureHeaderRead method.

• Seek operations, similarly to standard Socket class, were disabled. Parsers usually
do not need them.

After listening socket is bound and connection from client is accepted, NetRead-
Stream is passed to parser. While the parser is calling all the methods for data reading,
NetReadStream maps them to socket operations. Beyond that, it holds the number of
bytes available for receiving. Read operations decrement this value. When available
bytes are exhausted, next header is read. If more than announced data is required,
reading is divided to more phases. Bytes already announced are read and stored to
temporary variable. Then new header is read and �nally, remaining bytes are received
(by doing a recursive call on itself). Both parts of data are merged into one collection
and returned. After zero value in header is read, NetReadStream indicates end of �le.

When XML parser reaches the end of �le, the #ack method is called and ACK
message is sent to client. Then, the auxiliary connection can be closed.

5.1. SERVER SIDE - SMALLTALK/X 43

5.1.6 CellStore Service - RPCService Class

RPCService class represents CellStore service. This service has interface uni�ed with
other services that can be available to CellStore. Service can be registered easily, by
evaluating

CellStore::RPCService new registerTo:instance.

instance instance variable is expected to be CellStore DatabaseInstance object. Ser-
vice is run when the #startServices method of DatabaseInstance is called. CellStore
service adds another instance variable, server which refers to main (listening) Remote-
Server instance. It implements two methods only:

• #start - code for service startup,

• #shutdown - code for service shutdown and cleanup.

5.1.7 Remote Server Launcher - RemoteServerWizard Class

Launching the database instance together with services cannot be proceeded with only
one command. To make running the server as easy as possible, RemoteServerWizard
class was written.

Actually, it's only wrapper for several commands and provides few tasks with database
instance. All routines are implemented as class methods.

• #start

Create clean database with remote server.

• #stop

Stop the remote server and remove database.

• #toggle

Toggle between running and stopped state. This method is assigned to the button
which is added to Launcher toolbar during the service_rpc package load.

• #console

Show database console.

• #loadData

Load testing data from SVN repository into database.

• #databaseInstance

Return database instance.

• #xmlDatabase

Return the XML database main object.

The code included in this class is a very good reference to get familiar with database
instance and remote server handling.

44 CHAPTER 5. REALIZATION

5.1.8 Example - XML Import

This section shows simple example of large data upload and import. To successfully
import the XML document, following actions have to be performed:

1. Client asks for upload into given resource by calling XMLDB_UPLOAD_RESOURCE op-
eration. It passes resource reference as the only argument.

2. Server prepares new socket for upload, makes it listening on free port. Then it
creates new process which accepts remote connection and executes parsing. All
these actions are performed by XMLUploadJob object methods.

3. Server sends back the port number of listening socket as a reply to
XMLDB_UPLOAD_RESOURCE RPC call.

4. Client connects to remote port and writes whole �le into socket using protocol
speci�ed in section 4.3. At the same time, XMLUploadJob accepts connection and
starts parsing.

5. Client waits for acknowledge message (in blocking read). It is sent by the server
when �le is completely parsed.

6. After receiving, it closes the upload connection and asks for import result using
the SOCKET_JOB_STATUS procedure.

5.2 Client Side - C Library

Client library in C, named libcellstore, is based on code generated by rpcgen tool. rpcgen
and XDR library are available on Linux and other Unix-based systems by default. Al-
though implementation for Windows exists (one was noted in chapter 3), libcellstore
cannot be compiled on Windows natively without code changes because BSD network
sockets API were used. Cygwin can be used instead.

Whole library is organized into modules and most of them correspond to some subset
of exported CellStore functionality.

5.2.1 API Guidelines

All functions accessible from libcellstore follow the same naming and coding habits.

First of all, we will introduce data types de�ned in cellstore.h header �le. They
act as mappings over XDR de�ned types to provide the same type naming conventions
along the libcellstore library and isolate them from the XDR description to avoid API
changes in case of future protocol modi�cations. These are types are:

• CellStoreStatus - operation status code,

• CellStoreSession - pointer to RPC client connection,

• CellStoreObject - reference number to remote object,

5.2. CLIENT SIDE - C LIBRARY 45

• CellStoreResourceType - type of XML:DB resource,

• CellStoreDOMType - type of DOM node.

Functions are organized using pre�xes in manner similar to protocol de�nition de-
scribed in section 4.4. All functions names are pre�xed with cs_ ("cs" for CellStore),
XML:DB API functions names begin with cs_xmldb_ etc.

Every operation returns status code. This code is equal to CS_STATUS_OK if no error
has occurred. Otherwise, it contains corresponding code. All return values are passed
via pointers in function arguments. In case of error, no return variable will be modi�ed.
Function arguments have following order:

1. Return values. First of all, pointers for storing results are passed. In most cases,
only one pointer is enough. To return variable array, two pointers are needed.
The �rst one is a pointer to empty array pointer, for example int** for array
of integers. The latter one is int* for passing the array length. Note that all
functions returning variable-length data (arrays and also strings) allocates them
dynamically so programmer is responsible for their releasing.

2. Reference to a�ected object, if any. At most cases, RPC call is mapped to method
dispatching. So this argument refers to the receiver.

3. Other arguments.

5.2.2 Library Structure

• cellstore.c

Main module, its responsible for connection handling (including direct collection
opening using XMLDB URI) and basic operations such as remote objects handling.

• cellstore_xmldb.c

Main module for XMLDB interface. It provides basic XMLDB operations, includ-
ing transactions control.

• cellstore_xmldb_collection.c

This module provides interface for manipulating with XMLDB collections, includ-
ing child collections and resources creating.

• cellstore_xmldb_resource.c

Actions with XMLDB resources.

• cellstore_xmldb_download.c

Functions for resource download.

• cellstore_xmldb_upload.c

Functions for XML resource upload.

• cellstore_xmldb_query.c

XQuery and XQuery result related functions.

46 CHAPTER 5. REALIZATION

• cellstore_dom.c

DOM API.

• cellstore_oodb.c

Object oriented database API.

• cellstore_tools.c

Provides private functions for whole libcellstore.

• cellstore_error.c

Private functions for work with error statuses and global error message variable.
As mentioned before, all functions returns operation status code. Also, they set
up the global error message string which can be accessed via this module. The
only function accessible from API is cs_errorMessage() which returns pointer to
the error message string.

• cellstore_errmsg.c

This module is automatically generated by cascade of several scripts (xdr_parse.sh,
xdr_parse.awk and xdr_parse.sed) from XDR description in service_rpc.x �le.
It contains the only function. This function writes out the textual description of
given error code and appends the error message. Its made of one huge switch
statement containing all status codes from XDR �le. Textual description is taken
from comments in cs_status enumerated type declaration. Every value of enum is
expected to be in form as following:

CS_ERROR_OTHER = 1, /** Unsorted Error **/

It will produce code similar to following:

case CS_ERROR_OTHER:

fprintf(stderr,"[Unsorted Error] %s\n", msg);

break;

5.3 Smalltalk/X Client example - RemoteClient Class

To illustrate guidelines for creating of native Smalltalk client, I made this very simple
example which is able to perform XQuery query only. It can be used as an inspiration
for developing client in other object-oriented languages.

Smalltalk client object layout of XML:DB interface should match with XML:DB API
[4]. Figure 5.6 shows layout of sample client code illustrating guidelines for Smalltalk/X
client creating. Other components as SELF interface and DOM also should follow the
particular parts of CellStore API.

5.3. SMALLTALK/X CLIENT EXAMPLE - REMOTECLIENT CLASS 47

RPCClient

RemoteClient

+ xdr()
+ reconnect()
+ getXM LDBDatabase()
+ ident()
+ p rin tM essage:(String)

Result

- resul t

+ wi th :wi thCl ient:(resource , cl ient)
+ asXM LString()

XMLDBCollection

- co l lection

+ wi th :wi thCl ient:(co l lection, cl ien t)
+ xquery:(query)

XMLDB

+ newWithCl ien t:(cl ien t)
+ acceptsUri :(aString)
+ getCo l lection:user:pass:(uri , usernam e, password)
+ getRootCo l lectionUser:pass:(usernam e, password)

A l ready im p lem ented
in Sm al l ta lk / X

getXM LDBDatabase()

cl ien t

cl ient

cl ien t

xquery: (query)

getCo l lection:user:pass:(co l lection , usernam e, password)

ge tRootCol lectionUser:pass: (usernam e,password)

Figure 5.6: Structure of the sample Smalltalk/X client

48 CHAPTER 5. REALIZATION

Chapter 6

Testing

All parts of both client and server component are covered with unit test. Unit testing
is a crucial principle of so-called Extreme programming and Test-driven development
techniques.

Former approach uses short development iterations and unit tests as a way of check-
ing of the code correctness. Unit tests also allow programmers to do heavy refactoring.
Using the latter approach, the test covering all features which have to be implemented
is written. Then, using tools like SUnit, tests are run and the program is being devel-
oped until the tests pass all cases. Our protocol and its implementation are developed
progressively so using of agile methods is suitable for this project.

At �rst, this chapter provides brief description of testing tools used for this project.
Then, it gives information about test coverage on both server and client side. Finally,
it shows results of simple performance measurement.

6.1 Unit Testing Tools Used

6.1.1 Smalltalk/X - SUnit

Smalltalk/X have its own implementation of SUnit tool. SUnit is one of eldest unit
testing tools ever. It runs tests divided into categories or, in into packages. When some
tests fails, developer is allowed to debug appropriate test case in Smalltalk debugger and
correct the code. Then he is able to rerun the test which have failed before. Figure 6.1
shows new version of TestRunner for SUnit.

6.1.2 C Language - Check Library

Check [22] is one of existing unit testing frameworks for C language. It has a simple
interface for de�ning unit tests. Tests are run in a separate address space, so Check
can catch both assertion failures and code errors that cause segmentation faults or other
signals.

In contrast to SUnit, Check needs whole API to be declared before running the tests
because it has to compile them �rst. Without functions and data types being declared,
there is no way to compile them.

49

50 CHAPTER 6. TESTING

Figure 6.1: New TestRunner for Smalltalk/X SUnit tool

6.2 Test Coverage

6.2.1 Server Side - Smalltalk

Server side was primarily tested for proper handling of exceptions and return values.
Most of remote operation tests were inspired by client side tests. RPC server operations
are called from point in which the RPC reply is completely assembled and all exceptions
have been caught and processed in the reply. So the tests allow to check proper return
values of error codes.

XDR coder can encode enum values from both numbers and symbols. Numbers are
used when error code is calculated, for example in XMLDB::XMLDBException class.
To make testing as easy as possible, all server operations convert numeric values into
symbolic ones. To achieve that, the dictionaries representing enum values conversions are
stored into RemoteServer class object during the initial XDR parsing. These dictionaries
are represented by DOMTypes and StatusCodes class variables. During the evaluation,
server operation use #symbolicValueFor: method to convert numeric value to symbolic
one.

Also, some other components of server part were covered with tests. Test cases are
realized in following classes in CellStore-ClientServer-tests category:

• NetReadStreamTests

Tests of NetReadStrem class.

• RemoteServerOpsTests

Testcase for checking behavior of all server operations.

• RPCMTServerTests

Tests aimed at multi-thread processing in SunRPC::RPCMTServer.

6.2. TEST COVERAGE 51

• SessionStorageTests

Tests of SessionStorage and EnhancedSessionStorage classes.

• SocketJobsTests

Tests of socket job related classes (SocketJob and subclasses).

6.2.2 Client Side - C

On client side, all test are performed against the �nal API so whole operations or complex
scenarios are tested. These tests are run against the current database and its content so
�rst requirement is running database with remote server on local machine. First of all,
all data from database are erased to prepare the environment. Due to this, running the
tests against the database with important data is not recommended.

To partially check error handling, new protocol message was added. Calling the
ERROR_TESTING procedure, current connection is switched to error testing mode and
server functionality is changed. Then, modi�ed server is able to partially simulate acci-
dental disconnecting.

Using that, tests can check client library behavior in case that connection is lost.
This is important for upload or download operations since they consist of more than
one RPC call and other operations. If any of these operations crashes, an error must be
always signaled properly.

Tests are located in test/ subdirectory and are divided into several �les by the part
of API they are aimed at.

• test/main.c

Main tests code. It contains procedures for tests setup.

• test/test_core.c

Tests of common API, including tests for remote objects handling and maximum
connection number exceeding.

• test/test_dom.c

Tests covering DOM API.

• test/test_errors.c

Tests checking various connection related error states. They're discussed above.

• test/test_oodb.c

Tests of OODB API.

• test/test_xmldb.c

Tests of XML:DB API, including upload and download operations.

These �les have to be linked together after compilation. Easiest way to run tests is
executing make check command from main library sources directory. Note that Check
library has to be installed and CellStore database instance with RPC service must be
run at the same machine. Again, I note that these tests are destructive.

52 CHAPTER 6. TESTING

6.3 Performance Measurements

To measure the overhead of client-server protocol, I made several test scenarios covering
di�erent parts of operations provided by protocol. These test cases are:

1. Many Calls.
Two simple XML:DB operations are called (getting child collection and getting
parent collection).

2. OODB.
Several SELF operations are executed on XML resource (creating a string, message
sends, value fetching).

3. XQuery.
XQuery query is executed and the result is retrieved as XML string.

4. Big Import.
Import of big XML �le (1.2 MB) is performed.

These scenarios were implemented as local tests (CellStore::PerformanceTest and
subclasses) using CellStore API directly, and also as libcellstore based client program
(test/performance.c �le).

These tests were executed on notebook with Intel Celeron M 430 (at 1.73GHz) pro-
cessor and 1.5GB of RAM, running Smalltalk/X 5.4.4 on Debian GNU/Linux system.
Client part of remote performance tests was run on another notebook with Intel Core2
Duo T7250 (at 2.00GHz) and 2GB ram, also running Debian GNU/Linux, connected
via ethernet switch.

Executing times were compared and the result is shown in table 6.1. This table
shows execution times of both remote and local API calls for each test case. To make
the measurement more precise, these scenarios were called in loop.

• # of loops - number of loops being executed for each test case for both local and
remote calls.

• total time - total time elapsed (all loops).

• average time - average time calculated to one loop. This is the most important
column since it shows the execution time of each test case.

Table 6.2 shows the di�erences in execution times between remote calls and local
API usage. Each test case consist of few remote calls so the total di�erence has to be
divided by the number of calls. Big import test case consist of di�erent operations than
RPC calls so we won't calculate average time per call.

• Calls per loop - number of remote calls performed in each test case (in 1 loop).

• Overhead per loop - Di�erence between execution times for remote and local
usage.

6.3. PERFORMANCE MEASUREMENTS 53

Local API calls Remote API calls

Test case # of loops total time avg. time # of loops total time avg. time
[-] [ms] [ms] [-] [ms] [ms]

Many calls 100 000 64335 0.643 1 000 80996 80.996
OODB 100 000 24044 0.240 1 000 162144 162.144
XQuery 1 000 73225 73.225 1 000 156264 156.264
Big import 1 65839 65839 1 68285 68285

Table 6.1: Performance measurements - running times

Calls Overhead

Test per loop per loop per call
case [-] [ms] [ms]

Many calls 2 80.353 40.176
OODB 4 161.904 40.476
XQuery 2 83.039 41.520
Big import - 2446 -

Table 6.2: Performance measurements - client-server protocol overhead

• Overhead per call - Previous time recalculated to one remote call. This value
represents real overhead of remote call compared to local API call.

In all three RPC-based test cases, the delay of remote call is about 40 milliseconds.
During the �rst two test cases, the CPU utilization didn't get over 15 per cent. So we
can assume that this delay is caused by I/O waits. In case of XQuery test case, the CPU
utilization was much higher. During the XML �le import, the overhead ratio is about
3.7 per cent.

54 CHAPTER 6. TESTING

Chapter 7

Conclusion and Future Work

Client-server protocol for CellStore database engine was successfully designed. It covers
all important facilities provided by CellStore, including full support of XML:DB API
operations and direct access to SELF model interface.

CellStore database was improved with a native server implementing this protocol.
For client application, C library was created to make new client application development
as easy as possible. Its source code also contains few demo applications showing the API
and its usage. As a side e�ect of server part implementation, several improvements of
Smalltalk/X SunRPC implementation were made. They were sent to the author of
Smalltalk/X and they will appear in future Smalltalk/X releases.

Of course, our protocol will be expanded in future as new functions will be im-
plemented in CellStore database engine. The most important improvement are access
control lists which will allow managing the security within the database. In this stage
of CellStore project, it's not possible to include access lists to protocol since there is
even no use case model speci�ed. Also, creating of DOM model-based direct access
to nodes of stored XML resources will rapidly improve XML:DB usability. It will also
avoid unnecessary memory usage caused by DOM model objects building in server main
memory.

The future of the client-server protocol is connected with the CellStore development.
The quality of protocol design will be veri�ed as new functionality requirements appear.

55

56 CHAPTER 7. CONCLUSION AND FUTURE WORK

Bibliography

[1] CellStore project web-site.
http://cellstore.felk.cvut.cz/, 2009.

[2] eXist - Open Source Native XML Database.
http://exist-db.org/, 2009.

[3] Roy Thomas Fielding. Architectural Styles and the Design of Network-based Soft-

ware Architectures, dissertation. University of California, Irvine, 2000.
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm.

[4] XML:DB Initiative for XML Databases.
http://xmldb-org.sourceforge.net/, 2003.

[5] W3C: SOAP Version 1.2 Part 1: Messaging Framework (Second Edition).
http://www.w3.org/TR/soap12-part1/, 2007.

[6] XML-RPC speci�cation.
http://www.xmlrpc.com/spec, 2003.

[7] W3C: Web Service De�nition Lanugage.
http://www.w3.org/TR/wsdl, 2009.

[8] Sedna XML database.
http://modis.ispras.ru/sedna/, 2009.

[9] NeoDatis ODB, open source object database for Java, .Net & Mono.
http://www.neodatis.org/, 2009.

[10] GemStone Smalltalk Object Server.
http://www.gemstone.com/products/smalltalk/, 2009.

[11] Oracle XML DB Developer's Guide 11g Release 1.
http://download.oracle.com/docs/cd/B28359_01/appdev.111/b28369/toc.

htm, 2008.

[12] W3C: XQuery 1.0: An XML Query Language.
http://www.w3.org/TR/xquery/, 2007.

[13] W3C: Document Object Model (DOM) Level 3 Core Speci�cation.
http://www.w3.org/TR/DOM-Level-3-Core/, 2004.

57

http://cellstore.felk.cvut.cz/
http://exist-db.org/
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://xmldb-org.sourceforge.net/
http://www.w3.org/TR/soap12-part1/
http://www.xmlrpc.com/spec
http://www.w3.org/TR/wsdl
http://modis.ispras.ru/sedna/
http://www.neodatis.org/
http://www.gemstone.com/products/smalltalk/
http://download.oracle.com/docs/cd/B28359_01/appdev.111/b28369/toc.htm
http://download.oracle.com/docs/cd/B28359_01/appdev.111/b28369/toc.htm
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/DOM-Level-3-Core/

58 BIBLIOGRAPHY

[14] David Ungar and Randall B. Smith. Self: The power of simplicity. In OOPSLA

'87: Conference proceedings on Object-oriented programming systems, languages

and applications, pages 227�242, New York, NY, USA, 1987. ACM.

[15] Multipurpose Internet Mail Extensions (MIME), Part One: Format of Internet
Message Bodies.
http://tools.ietf.org/html/rfc2045, 1996.

[16] RFC 5531 - RPC: Remote Procedure Call Protocol Speci�cation Version 2.
http://tools.ietf.org/html/rfc5531, 2009.

[17] CORBA Component Model, v4.0.
http://www.omg.org/technology/documents/formal/components.htm, 2008.

[18] George Coulouris, Jean Dollimore, and Tim Kindberg. Distributed Systems: Con-

cepts and Design. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1994.

[19] RFC 4506 - XDR: External Data Representation Standard.
http://tools.ietf.org/html/rfc4506, 2006.

[20] Dave Marshall. Remote Procedure Calls (RPC).
http://www.cs.cf.ac.uk/Dave/C/node33.html, 1999.

[21] SunRPC Remote Procedure Call Implementation.
http://www.exept.de:8080/doc/online/english/programming/goody_sunrpc.

html, 2009.

[22] Check: A unit testing framework for C.
http://check.sourceforge.net/, 2009.

http://tools.ietf.org/html/rfc2045
http://tools.ietf.org/html/rfc5531
http://www.omg.org/technology/documents/formal/components.htm
http://tools.ietf.org/html/rfc4506
http://www.cs.cf.ac.uk/Dave/C/node33.html
http://www.exept.de:8080/doc/online/english/programming/goody_sunrpc.html
http://www.exept.de:8080/doc/online/english/programming/goody_sunrpc.html
http://check.sourceforge.net/

Appendix A

List of Used Abbreviations

ACID Atomicity, Consistency, Isolation, Durability

ACK Acknowledgment

ACL Access Control List

API Application Programming Interface

Corba Common Object Requesting Broker Architecture

DOM Document Object Model

EoF End of File

FTP File Transfer Protocol

HTTP Hypertext Transfer Protocol

HTML HyperText Markup Language

IANA Internet Assigned Numbers Authority

JDBC Java Database Connectivity

JSP Java Server Pages

MIME Multipurpose Internet Mail Extensions

NFS Network File System

OID Object Identi�er

OODB Object-Oriented Database

OOP Object-Oriented Pointer or Object-Oriented Programming

ONC RPC Open Network Computing Remote Procedure Call

OSI Open Systems Interconnection

PHP Hypertext Preprocessor (former meaning was Personal Home Page)

59

60 APPENDIX A. LIST OF USED ABBREVIATIONS

PL/SQL Procedural Language/Structured Query Language

REST Representational State Transfer

RPC Remote Procedure Call

SAX Simple API for XML

SMTP Simple Mail Transport Protocol

SOAP Simple Object Access Protocol

TCP Transmission Control Protocol

UDP User Datagram Protocol

URI Uniform Resource Identi�er

XDR eXternal Data Representation

XSL Extensible Stylesheet Language

W3C World Wide Web Consortium

WebDAV Web-based Distributed Authoring and Versioning

WSDL Web Services Description Language

XML eXtensible Markup Language

XML:DB XML Database

Appendix B

Installation Instructions

Following chapter gives detailed information about installing of CellStore with remote
access ability and compiling client library.

B.1 CellStore Installing

The way described bellow is the simplest one from many various options. Currently, it's
recommended.

1. Download and install Smalltalk/X with Subversion support enabled. Use down-
load page at http://smalltalk.felk.cvut.cz/. There is either Debian reposi-
tory setting information or tarball with whole Smalltalk/X installation. Although
CellStore and remote server should work on Windows systems, they've been pri-
marily tested on GNU/Linux. Therefore using of Linux machine is recommended.
Note that client library cannot be compiled on Windows.

2. Ensure you have Subversion installed on your system. Simply type svn command
and see whether it runs.

3. Run Smalltalk/X and assemble new image. Debian version is installed in /opt/stx/
so run

user@box:~$ /opt/stx/bin/stx

4. Load CellStore, RPC Service and others from Subversion repository. Evaluate
following code in Workspace (type it in, then select and chose Do it from right-
click menu).

Smalltalk loadPackage: 'cvut:fel/cellstore/service_rpc'

Package location is mapped into subversion repository so service_rpc package and
its dependencies (including CellStore core) will be downloaded into your image.
This requires Subversion to be installed on system.

61

http://smalltalk.felk.cvut.cz/

62 APPENDIX B. INSTALLATION INSTRUCTIONS

5. Create your database instance and register RPC service. Then startup services.
You can either use RemoteServerWizard class (see chapter 5.1.7) or evaluate code
similar to following.

|instance|

instance := CellStore::DatabaseInstanceBuilder buildOnDirectory:'.'.

CellStore::RPCService new registerTo:instance.

instance startServices.

First command will create new database instance. Second one registers RPC
service to created database instance. Third one invokes services startup.

6. Now you can access database with your libcellstore-based programs.

7. You can also access data from database console. Simply evaluate

(CellStore::DatabaseConsoleV2 new)

open;

fileMenuOpen:instance.

B.2 Client Library Compiling

Library is provided as source code. It has Make�le with several targets which can be
used.

• lib or library (default) - Compiles library and places it into dist/ subdirectory
together with header �les needed to compile library-based applications. You can
use this directory content as a distribution package.

• install - Installs compiled library to system. Copies shared library from dist/

subdirectory into /usr/local/lib and required headers into /usr/local/include
This action requires root privileges.

• uninstall - Remote previously installed library from system. Also needs root
privileges.

• check - Run tests on local database, need Check [22] library installed on your
system. Note that tests are destructive, so do not have important data in database
before running these tests.

• demo - Builds demo applications. See section B.3.

• client - Compiles testing client. Currently it's a sandbox for implementing new
features only and has no speci�c functionality.

• debug - Compiles testing client with debugging symbols and messages. Note this
option does not make di�erent targets so before compiling a debug target after
non-debug version (and vice versa), use make clean command �rst.

• clean - Removes all non-source data (object �les and other binaries).

Distribution also contains Doxy�le so you can generate library documentation, if not
present, using Doxygen.

B.3. DEMO APPLICATIONS 63

B.3 Demo Applications

Few demo applications have been made to illustrate some of libcellstore features. You can
�nd them in demo/ source subdirectory. Current distribution contains three applications
and one sample code used in developers' tutorial in chapter C. Make�le provided with
this demo applications compiles them with shared library in dist/ subdirectory. To
run these applications, you have to have libcellstore.so installed or LD_LIBRARY_PATH

environment variable de�ned. Alternatively, you can use run.sh script which sets this
environment variable automatically before run. Usage is simple. Simply add ./run.sh

pre�x before command you want to run.

./run.sh xquery xmldb://localhost "doc('xmldb:authors2.xml')//surname"

Applications provided are (names correspond with Make�le targets):

• xquery - performs XQuery query on given collection. It recursively creates all
collections in URI it they're not exist.

• xmlupload - uploads new XML resource into given collection.

• xmldblist - lists content of given collection as a tree.

• tutorial - see tutorial in section C.

Few examples of usage together with their output are shown on �gure B.1.

64 APPENDIX B. INSTALLATION INSTRUCTIONS

$./xmlupload xmldb://localhost/test/ books.xml < books.xml

Moving to child collection: test

Resource uploaded successfully: books.xml

$./xquery xmldb://localhost/test/ "doc('xmldb:books.xml')//title"

<title lang="eng" withPictures="yes">

Harry Potter

</title>

<title lang="eng">

Learning XML

</title>

<title>

1984

</title>

$./xmldblist xmldb://localhost/

Listing XMLDB collection [root] at xmldb://localhost/

root/

test/

test2/

- books.xml [XML]

- books.xml [XML]

bookstore/

- bookstore-1.xml [XML]

- bookstore-1-expensive.xq [XQ]

- bookstore-1-expensive-titles.xq [XQ]

- authors2.xml [XML]

$

Figure B.1: Demo applications: sample output

Appendix C

Programming with the Client
Library

Following tutorial gives brief information about usage of libcellstore API. It expects that
libcellstore is successfully installed on system.

All libcellstore API functions and types can be declared by including the cellstore.h
�le located on include search path. In this tutorial we will open some �le, so stdio.h is
needed, too.

#include <cellstore.h>

#include <stdio.h>

Every operation returns status code so we need a variable for it.

CellStoreStatus status;

Connected session is identi�ed by CellStoreSession variable.

CellStoreSession session;

Results of operations are returned via pointers passed before other function arguments.
Error codes have to be handled. Following code will initiate the session.

status = cs_session_init_simple (&session, "localhost");

if (status != 0) {

printf("Connection error.\n");

return 1;

}

Every remote object from database is identi�ed by CellStoreObject variable

CellStoreObject collection;

We will open the root collection of XML database. Username and password are ignored
since CellStore has not ACLs implemented yet.

65

66 APPENDIX C. PROGRAMMING WITH THE CLIENT LIBRARY

status = cs_xmldb_get_rootcollection (&collection, "username",

"password", session);

HANDLE (status);

HANDLE() is a macro that is not de�ned in cellstore.h. It will help us to work with
status codes. It simpli�es processing of operation statuses and prints error message.
Real application requirements on error handling will be probably di�erent.

cs_printError() takes two arguments, status code and a message text. If 0 is
passed instead of message, last error message is taken. Macro have to be de�ned at the
beginning of the source as follows:

#define HANDLE(status) if (status != CS_STATUS_OK) {\

cs_printError (status, 0);\

cs_session_destroy (session);\

return 1;\

}

Now, we will open a �le with XML document.

FILE * file = fopen ("books.xml", "r");

if (file == 0) {

perror ("File open error");

cs_session_destroy (session);

return 1;

}

We will use function that creates new XML resource within the root collection and up-
loads data from previously opened �le. Resource ID (set as "books.xml") is an identi�er
in XML database.

CellStoreObject resource;

status = cs_xmldb_quick_xml_upload (&resource, file, "books.xml",

collection, session);

fclose (file);

HANDLE (status);

Previous function gave us reference to XMLResource object on server. We don't need
this object since data are safely stored in database. It's a good practise to drop objects
we do not need. Following call drops the object reference and object will be freed during
the next upcoming garbage collecting process on server.

status = cs_object_drop(resource, session);

HANDLE (status);

Reference variable is now invalid. Following call tries to retrieve parent collection of the
resource. If error occurs, status is nonzero and global last error message variable is set.
We won't use our macro because we don't want to exit the program.

67

status = cs_xmldb_resource_get_parent(&collection, resource, session);

if (status != 0) { cs_printError(status, 0); }

Something like following will be printed:

[No such object] Object does not exist

The text in the brackets is a textual identi�cation of status code. The text after brackets
is an error message.

Following call performs XQuery and returns reference to ResultSet

CellStoreObject result;

status = cs_xmldb_xquery (&result, "doc('xmldb:books.xml')//title",

collection, session);

HANDLE (status);

There exist several way how to retrieve resource or XQuery result from server.

For large data, cs_xmldb_download() is recommended. It will retrieve the data
directly into the opened �le. cs_xmldb_download_string() downloads the data to new
string. These functions are very polite to server memory because the data is being
generated directly to network stream.

Function cs_xmldb_result_as_xml() is better for small data because it doesn't
initialize auxiliary connection for transfer. On the other hand, it requries the result
XML to be allocated as a temporary string on server.

In this example, we will use the last option.

char * str;

status = cs_xmldb_result_as_xml(&str, result, session);

HANDLE (status);

Print it. We must free the string because it was allocated dynamically.

printf("%s\n", str);

free (str);

That's all so we will close the session

cs_session_destroy (session);

Whole source code is printed without comments on �gure C.1.

To compile the program, you must link it with the libcellstore library (shared).

gcc -o tutorial tutorial.c -lcellstore

68 APPENDIX C. PROGRAMMING WITH THE CLIENT LIBRARY

#include <cellstore.h>

#include <stdio.h>

#define HANDLE(status) if (status != CS_STATUS_OK) {\

cs_printError (status, 0);\

cs_session_destroy (session);\

return 1;\

}

int main (int argc, char * argv[]) {

CellStoreStatus status;

CellStoreSession session;

status = cs_session_init_simple (&session, "localhost");

HANDLE (status);

CellStoreObject collection;

status = cs_xmldb_get_rootcollection (&collection, "username",

"password", session);

HANDLE (status);

FILE * file = fopen ("books.xml", "r");

if (file == 0) {

perror ("File open error");

cs_session_destroy (session);

return 1;

}

CellStoreObject resource;

status = cs_xmldb_quick_xml_upload (&resource, file, "books.xml",

collection, session);

fclose (file);

HANDLE (status);

status = cs_object_drop(resource, session);

HANDLE (status);

status = cs_xmldb_resource_get_parent(&collection, resource, session);

if (status != 0) { cs_printError(status, 0); }

CellStoreObject result;

status = cs_xmldb_xquery (&result, "doc('xmldb:books.xml')//title",

collection, session);

HANDLE (status);

char * str;

status = cs_xmldb_result_as_xml(&str, result, session);

HANDLE (status);

printf("%s\n", str);

free (str);

cs_session_destroy (session);

}

Figure C.1: Whole tutorial source code without comments

Appendix D

CD Content

|-- bin/ - Binaries of client library.
| |

| |-- linux-i686/ - 32 bit version (Intel).
| |

| |-- linux-x86_64/ - 64 bit version (AMD).
|

|-- doc/ - Documentation.
| |

| |-- client/ - Client library (Doxygen).
| |

| |-- server/ - Server part (Smalltalk/X documentation HTML export).
|

|-- src/ - Code sources.
| |

| |-- svn/ - Copy of SVN repository with all packages needed to load CellStore.
| |

| |-- client/ - Client library sources.
| |

| |-- server/ - Server part (without dependencies).
|

|-- thesis/ - Thesis text.
|

|-- src/ - LATEX sources of thesis.
|

|-- plickm1_thesis.pdf - Thesis compiled to PDF.

69

	Introduction
	Analysis
	Interfaces of Existing Object & XML Database Engines
	eXist
	Sedna
	NeoDatis ODB
	GemStone/S
	Oracle XML DB

	CellStore Database Engine
	XML:DB Interface
	SELF Model Interface

	Client-server Protocol for CellStore
	Protocol Requirements
	Implementation Approaches

	RPC Programming in C and Smalltalk/X
	XDR Description
	RPC Programming in C
	Server
	Client
	Building and Running

	RPC Programming in Smalltalk/X
	Server
	Client
	Various Smalltalk/X RPC Enhancements

	RPC in Other Programming Languages

	Protocol
	Mapping Object World to ONC RPC
	Handling the Objects Remotely
	Exceptions

	Message & Control Flow
	Single-Call Operations
	Multi-Call Operations

	Large File Transfer
	Data Transfer

	Naming Conventions and Organization
	Implemented Functionality
	XML:DB
	DOM
	OODB

	Realization
	Server Side - Smalltalk/X
	Multi-threaded RPC Server - RPCMTServer Class
	Server Core - RemoteServer Class
	Session Object Holder - SessionStorage Class
	Large Files Transfer - SocketJob Class
	Special Read Stream - NetReadStream Class
	CellStore Service - RPCService Class
	Remote Server Launcher - RemoteServerWizard Class
	Example - XML Import

	Client Side - C Library
	API Guidelines
	Library Structure

	Smalltalk/X Client example - RemoteClient Class

	Testing
	Unit Testing Tools Used
	Smalltalk/X - SUnit
	C Language - Check Library

	Test Coverage
	Server Side - Smalltalk
	Client Side - C

	Performance Measurements

	Conclusion and Future Work
	Bibliography
	List of Used Abbreviations
	Installation Instructions
	CellStore Installing
	Client Library Compiling
	Demo Applications

	Programming with the Client Library
	CD Content

